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The impact of cellular metabolism on chromatin 
dynamics and epigenetics
Michael A. Reid, Ziwei Dai and Jason W. Locasale*

The substrates used to modify nucleic acids and chromatin are affected by nutrient availability and the activity of metabolic 
pathways. Thus, cellular metabolism constitutes a fundamental component of chromatin status and thereby of genome 
regulation. Here we describe the biochemical and genetic principles of how metabolism can influence chromatin biology and 
epigenetics, discuss the functional roles of this interplay in developmental and cancer biology, and present future directions in 
this rapidly emerging area. 

Organismal metabolism begins with the ingestion of nutrients from 
food sources. It continues with the processing of these nutrients in the 
gut, which then interacts with the microbiome, liver, pancreas, muscle, 
and many other organs to result in a set of compounds that circulate in 
the plasma1. Cells take up these plasma-supplied nutrients along with 
other components provided by their microenvironment2,3 and use them 
to create cellular metabolic networks that are organized through inter-
connected chemical reactions, with thousands of metabolites linked by 
commensurate numbers of reactions. Metabolic network activity is char-
acterized by the concentrations of intermediate metabolites and rates 
(that is, fluxes) at which one metabolite is converted to another, and 
is mediated by genotype, epigenotype, and environmental inputs such 
as nutrient availability and the engagement of signalling pathways3–6.

Chromatin is the intracellular structure that packages DNA in eukary-
otic cells. The principal unit of chromatin organization is the nucleo-
some, which is formed by DNA wrapped around an octamer of histone 
proteins. Chromatin can exist in different stable states and is altered 
by covalent modifications on the histones and the presence of many 
other factors, such as long non-coding RNAs, protein chaperones, and 
chromatin remodelling enzymes7–10. These modifications influence chro-
matin structure and binding of chromatin remodelling enzymes and 
transcription factors in complex and often poorly understood ways7–11. 
They can also mark the existence of functional genomic elements (for 
example, promoters, enhancers and exons)7–10,12–14. Thus, there is tre-
mendous potential for these posttranslational modifications to have 
profound effects on gene expression, and substantial ongoing efforts 
aim to understand the structure and function of chromatin modifica-
tions10,11,15–19. Chromatin and nucleic acid modifications, when inher-
ited after cell division or in offspring after reproduction (for example, 
genomic imprinting), are often referred to as epigenetics18,20.

As metabolites are the substrates used to generate chromatin modi-
fications, there exists an intriguing but complex connection between 
metabolism and epigenetics. In this Review Article, we first introduce 
biochemical principles that enable the epigenome to respond to meta-
bolic variation and then discuss the genetic basis for how this interaction 
may generate stable phenotypes. We next discuss recent advances in our 
understanding of this connection with particular emphasis on stem cell 
biology and tumorigenesis. Our aim is to provide both a foundation of 
the principles that govern the interaction between metabolism and chro-
matin state and a discussion of ongoing developments that are shaping 
our understanding of its role in biology. 

Biochemical principles of the link from metabolism to chromatin 
More than 100 distinct covalent modifications have been identified 
on chromatin, DNA and RNA, with many having substantially docu-
mented or emerging functional annotation21–23. Among them, meth-
ylation, phosphorylation, ubiquitination and acetylation are the most 
well-understood, but less studied modifications, including glycosyla-
tion, crotonylation and succinylation, are also known to be function-
ally important24,25. Addition and removal of these modifications are, 
with some exceptions26, catalysed by enzymes of which the activities 
are mediated by the availability of substrates, cofactors and allosteric 
regulators that are derived from metabolic pathways. A key characteristic 
that defines the crosstalk between metabolism and chromatin is that 
the kinetic (for example, Km values) and thermodynamic (for example, 
Kd values) properties of these interactions are commensurate with the 
dynamic range of physiological concentrations of the corresponding 
intermediates in metabolism (Table 1). For example, methylation and 
acetylation reactions often have substrates that have typical cellular con-
centrations that are commensurate with enzyme Km values, and thus are 
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responsive to changes in metabolism19,26–31 (Table 1, Fig. 1). In contrast, 
modifications such as phosphorylation and ubiquitination do not 
respond to changes in metabolism as kinases and E3 ligases that carry out 
phosphorylation and ubiquitination reactions use ATP as a metabolic 
substrate27. ATP levels (roughly mM in cells) do not reach physiological 
levels that limit the activities of these enzymes (Km roughly μM) (Fig. 1a). 

There are numerous chromatin- and nucleic-acid-modifying enzymes 
(Fig. 1b). Some examples that are non-exhaustive and have been reviewed 
extensively elsewhere7–9,17,25,32–38 include histone methyltransferases, glyco-
syltransferases, demethylases, acetyltransferases, deacetylases, deacylases, 
and DNA and RNA methyltransferases and demethylases. As has been 
thoroughly reviewed3,9,19,28,30,31,39–44, these enzymes utilize, as substrates and 
cofactors, metabolites derived from diverse metabolic pathways includ-
ing serine–glycine–one–carbon (SGOC) metabolism and particularly 
the methionine cycle, the tricarboxylic acid cycle, β-oxidation, glycolysis, 
and hexosamine biosynthesis. In these metabolic networks, intermediate 
metabolites including S‑adenosyl methionine (SAM), acetyl-coenzyme 

A (acetyl-CoA), NAD+, α-ketoglutarate (αKG), uridine diphosphate 
N‑acetylglucosamine (UDP-GlcNAc), and others serve as substrates for 
enzymes that modify chromatin and nucleic acids. Additionally, metabo-
lites such as S‑adenosyl homocysteine (SAH), coA, β-hydroxybutyrate, 
fumarate, succinate, lactate, and S and R enantiomeric forms of 2‑hydroxy-
glutarate (2HG) modify enzyme activity, often by competitively inhibiting 
substrate utilization. There is also emerging evidence that vitamin C may 
act as a cofactor for dioxygenases that modify chromatin and DNA45–47. 
Thus, each modification can be affected by metabolites from multiple 
metabolic pathways—for instance, enzymes involved in histone and DNA 
methylation and demethylation can be regulated by both methionine 
metabolism and the tricarboxylic acid (TCA) cycle—thus enabling the 
epigenome to respond to the status of the whole metabolic network.

Principles for the influence of metabolism on epigenomics
Epigenetic modifications are maintained over cellular and organis-
mal generations even when the environmental stimuli triggering a 

  Table 1 | Ranges of kinetic parameters and concentrations of substrates and cofactors of chromatin-modifying enzymes.

Enzyme Substrates and cofactors Kinetic parameter 
range [mM] 

Substrate concentration 
range [mM]

[S]/Km range Refs 

Histone acetyltransferases 
(e.g. HATs, KATs, GCN5, CBP, p300)

Acetyl-CoA 0.0002–0.046 (Km) 0.002–0.013 0.04–65 82, 134–136

CoA 0.00044–5.43 (Ki) – –

Histone methyltransferases 
(e.g. COMPASS, MLLs, EZH2/PRC2, 

SETs, DOT1L)

SAM 0.0012–0.0345 (Km) 0.0033–0.059 0.096–49 137–141

SAH 0.00148–0.071 (Ki) – –

MTA – – –

DNA methyltransferases 
(e.g. DNMTs)

SAM 0.0001–0.021 (Km) 0.0033–0.059 0.16–536 141–145

SAH 0.000015–0.0024 (Ki) – –

MTA – – –

Histone deacetylases  
(e.g. SIRTs, HDACs)

NAD+ 0.0023–1.4 (Km) 0.3–2 0.21–870 146–151

Nicotinamide 0.029 –0.051 (Ki) – –

β-Hydroxybutyrate 2.4–5.3 (IC50) 0.01–10 –

Histone demethylases  
(e.g. LSD1, JHDMs, JMJDs, 

JARIDs, UTX)

αKG 0.009–0.037 (Km) 0.11–0.26 3–28.9 107, 152–158

Oxygen 0.057–0.197 (Km) 0.021–0.17 0.11–2.98

FAD – – –

R-2HG 0.024–0.079 (IC50) – –

S-2HG 0.026–0.097 (IC50) – –

Succinate 0.32–0.8 (IC50) – –

Fumarate 1.5–2.3 (IC50) – –

Vitamin C – – –

FADH2 – – –

DNA demethylases  
(e.g. TETs)

αKG 0.035–0.075 (Km) 0.11–0.26 1.47–7.43 155–157, 159, 
160

Oxygen 0.02–0.04 (Km) 0.021–0.17 0.52–8.5

R-2HG 4–5 (IC50) – –

S-2HG 1–1.6 (IC50) – –

Succinate 0.44–0.76 (IC50) – –

Fumarate 0.23–0.55 (IC50) – –

Vitamin C – – –

Kinetic parameters and concentrations of substrates and cofactors of chromatin-modifying enzymes. HATs, histone acetyltransferases; KATs, lysine acetyltransferases; GCN5, GCN5-related 
N-acetyltransferase; CBP, CREB-binding protein; p300, E1A binding protein p300; COMPASS, complex proteins associated with Set1; MLL, mixed-lineage leukaemia histone methyltransferases; 
EZH2/PRC2, enhancer of zeste 2 polycomb repressive complex 2; SETs, SET domain-containing methyltransferases; DOT1L, DOT1-like histone lysine methyltransferase; DNMTs, DNA methyl-
transferases; SIRTs, sirtuins; HDACs, histone deacetylases; LSD1, lysine demethylase 1; JHDMs; jumonji-domain-containing histone demethylases; JMJDs, jumonji C-domain-containing histone 
demethylases; JARIDs, jumonji and AT-rich interaction domain-containing histone demethylases; UTX, ubiquitously-transcribed X chromosome histone demethylase; TETs, ten-eleven transloca-
tion DNA demethylases; SAM, S-adenosylmethionine; SAH, S-adenosylhomocysteine; MTA, methylthioadenosine; NAD+, nicotinamide adenine dinucleotide (oxidized); αKG, α-ketoglutarate; 
FAD, flavin adenine dinucleotide (oxidized); FADH2, flavin adenine dinucleotide (reduced); R-2HG, (R)-2-hydroxyglutarate; S-2HG, (S)-2-hydroxyglutarate.
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particular epigenetic reprogramming mechanism are removed. For 
example, individuals exposed to famine during the Dutch Hunger 
Winter displayed altered DNA methylation patterns for over six dec-
ades48. Moreover, factors such as diet49–52, microbiome53, temperature54, 
malnutrition55, chemical exposure56, and many others are able to induce 
heritable alterations in nucleic acid or histone methylation profiles that 
can be stably transmitted through more than ten generations54. How 
epigenomic states are stably inherited is unknown, but perturbations to 

chromatin-modifying enzymes in the germline in controlled laboratory 
settings have yielded comparable heritable effects to what is observed in 
settings of human exposure57. This suggests that changes to the activity 
of chromatin-modifying enzymes that are known to be affected by 
metabolism may be possible transient events that contribute to these 
phenotypic changes. 

Furthermore, the epigenome can be used to characterize cellu-
lar state or type. Comparative analyses of epigenomic profiles have 
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Figure 1 Biochemical basis of metabolite interaction with chromatin and metabolic pathways that contribute. (a) In contrast to kinases and E3 ligases, the 
physiological concentrations of substrates of chromatin-modifying enzymes such as DNA methyltransferase (DNMTs), histone methyltransferase (HMTs), and 
histone acetyltransferases (HATs) are much lower, thus limiting enzymatic activities. Consequently, the reaction rates of these enzymes are highly responsive 
to local changes in substrate availability. The ratio of substrate concentration to Km value is shown on the x axis, and relative reaction rate on the y axis. 
Ranges of [S]/Km for all five types of enzymes were estimated from Km values in the BRENDA database (www.brenda-enzymes.org). (b) Uptake and catabolism 
of macronutrients—for example, glucose and amino acids—generate substrates such as acetyl-CoA and SAM, and activity modulators such as αKG, 2HG, 
succinate, fumarate, lactate, SAH, oxidized and reduced nicotinamide adenine dinucleotide (NAD+, NADH), and oxidized and reduced flavin adenine 
dinucleotide (FAD, FADH2) used by enzymes that modify chromatin. SAM is the major methyl donor for methylation of cytosine bases in DNA and histone 
residues by DNMTs and HMTs, respectively. Acetyl-CoA is an essential substrate for acetylation of histone residues carried out by HATs. Other metabolites 
such as αKG, NAD+ and FAD are critical cofactors for the activity of chromatin-modifying enzymes. αKG is used by TET-family DNA demethylases (TETs) and 
JmjC-family histone demethylases (JmjCs) to facilitate removal of methyl groups from cytosine bases and histone residues, respectively. LSD-family histone 
demethylases (LSD) require FAD to demethylate histone residues. Sirtuins and other histone deacetylaces (HDACs) require NAD+ to deacetylate histone 
residues. Additionally, metabolites such as 2HG, succinate, fumarate, lactate and SAH can inhibit the activity of chromatin-modifying enzymes. 
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identified cell- and tissue-type-specific chromatin and DNA methyla-
tion features58. Alterations to chromatin marks have been shown to 
serve as limiting steps to cell fate transitions, such as those occurring 
during nuclear transfer59,60, indicating that the epigenome is causally 
implicated in the establishment of cellular states. A conceptual frame-
work known as Waddington’s landscape is often used to illustrate the 
relationship between the epigenome and cell states61–66. In the 1940s, 
Conrad Waddington developed the concept of an epigenomic landscape 
as a blueprint for the differentiation program during development65–68. 
Waddington’s landscape is composed of valleys and summits, with val-
leys representing epigenotypes (in modern terms, stable chromatin mod-
ification profiles that define a phenotype) and summits corresponding to 
the barriers required for the maintenance of stable, heritable epigenomic 
states that prevent transitions between epigenotypes. Thus, valleys can 
represent different cell states (for example, pluripotent versus differ-
entiated, normal versus cancerous), the transitions between which are 
limited by changes in chromatin status (Fig. 2a,b).

Two models are proposed for how epigenetics could be affected 
by metabolic alterations in the context of Waddington’s landscape 
(Fig. 2c,d). One possibility (model I) is that metabolic reprogramming 
facilitates the transition from one cell type to another (for example, 
differentiation) by changing specific chromatin modifications. The 
stability of these cell states, and thus how probable it is for a cell that 
has transitioned to a new cell state to return to its previous cell type, 
depends on the height of the barrier. For example, a change in the levels 
of metabolites such as methionine or αKG would modulate the activity 
of methyltransferase or demethylase enzymes, thereby promoting the 
reorganization of specific epigenetic marks and facilitating cell differ-
entiation across a barrier (Fig. 2b). Another possibility (model II) is 
that metabolic reprogramming reshapes Waddington’s landscape and 
induces the formation of new stable epigenetic states. In this model, 
a change in cellular metabolism could either induce gene expression 
programs related to chromatin remodelling through any number of 
mechanisms known to allow for such effects, or could directly affect 
the availability of substrates and cofactors for chromatin-modifying 
enzymes. In both instances, the cell state transition would be irrevers-
ible as Waddington’s landscape has changed. This may occur during 
germline transmission of an epigenomic phenotype due to a parental 
diet, or a germline mutation in a chromatin-modifying enzyme49,57,69 
(Fig. 2c). Although these proposed models are intriguing, more research 
is needed to reconstruct the structure of the epigenetic landscape under 
different metabolic conditions to investigate and distinguish between 
different possibilities.

Metabolism and epigenetics in cell fate and development
In recent years, the link between cellular metabolism, cell fate and early 
organismal development has been an area of intense study. Early events 
in stem cell differentiation occur rapidly, and thus changes in metabo-
lism as a driver of such events is an attractive hypothesis40. Indeed, the 
influence of metabolism in the maintenance of stem cell pluripotency 
has been extensively explored5,40,70–74. The effects of metabolism on stem 
cell fate have been recently reviewed in detail elsewhere3,5,75 and so here 
we will touch on specific aspects that highlight their interplay. 

Two subsets of embryonic stem cells (ESCs), termed naive and 
primed, have been defined based on their distinct pluripotency versus 
differentiation properties, and are also characterized by epigenetically 

distinct states5,40. Naive pluripotent stem cells are characterized by their 
ability to form all cell types without bias, whereas primed pluripotent 
stem cells are considered to be poised for lineage differentiation5,40. In 
general, high rates of glycolysis even in the presence of oxygen, a phe-
nomenon known as the Warburg effect28, is prevalent in pluripotency 
and appears to be dynamically regulated to facilitate the differentiation 
process76. For example, human naive pluripotent stem cells (PSCs) were 
shown to have higher glycolytic metabolism than human primed PSCs 
or differentiated cells71, and loss of mitochondrial oxidative metabolism 
was shown to cause defects in mouse haematopoietic stem cell dif-
ferentiation77. Of note, other reports have shown increased oxidative 
phosphorylation in human and mouse naive PSCs compared to their 
primed counterparts78. Together, these studies emphasize the temporal 
complexities of cellular metabolism in driving cell fate, and that glyco-
lysis and oxidative metabolism may not be mutually exclusive when it 
comes to regulating pluripotency. Although metabolism unquestion-
ably influences the pluripotent state, additional studies are needed to 
elucidate the exact mechanisms for how metabolic features contribute 
to pluripotency or differentiation. 
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Figure 2 Metabolic reprograming and Waddington’s epigenomic landscape. 
(a) Schematic representation of Waddington’s landscape depicting cell states 
existing in valleys maintained by epigenotypes and the phenotypic barrier 
between two cell states, such as pluripotent and differentiated, epithelial 
and mesenchymal, somatic and induced pluripotent (iPSC), and primary 
and metastatic cancer cells. Examples of traits associated with each cell 
state are listed to the right of the plot. (b) Model of how metabolism could 
facilitate cell state transitions without affecting the shape of the epigenomic 
landscape, such as a change in metabolite level allowing for reorganization of 
specific chromatin marks. (c) Model of how metabolic reprogramming could 
reshape the entire epigenomic landscape, leading to new cell states in a 
case where a cell type has different metabolic requirements. Balls represent 
cells transitioning from one state to another after changes in metabolism-
dependent chromatin remodelling alters the phenotypic barrier. 
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In addition to the metabolic changes that occur during these cell fate 
transitions, it is also now widely appreciated that changes in metabolism 
are directly linked to changes in chromatin and DNA state. The levels of 
acetyl-CoA, the substrate for histone acetylation79–83, have been shown 
to be critical for the maintenance of human and mouse stem cell pluri-
potency70. Reduced NAD+ levels due to increased glycolytic metabo-
lism have been shown to reduce NAD+-dependent histone deacetylase 
activity and to promote mouse muscle stem cell differentiation84. αKG 
was shown to maintain mouse naive stem cell self-renewal by promot-
ing histone and DNA demethylation through the activity of JmjC-
family histone demethylases and TET-family DNA demethylases85. 
Increased αKG levels were also found to promote early differentiation 
of human primed PSCs and mouse epiblast stem cells86. Of significance, 
reduction of the αKG/succinate ratio was able to reverse the observed 
effects85,86, indicating that the alterations in metabolic pathways drive 
chromatin dynamics. 

The methionine cycle has also been shown to regulate histone meth-
ylation in mouse ESCs74. As with αKG, methionine-derived SAM 
appears to play multiple roles in mediating cell fate depending on 
context. Depletion of SAM through short-term methionine depriva-
tion triggered differentiation of human primed ESCs73. Additionally, 
nicotinamide N‑methyltransferase upregulation in human naive ESCs 
depleted SAM pools and maintained self-renewal, thus preventing the 
differentiation process76. Beyond the literature on pluripotency and 
metabolism, metabolism has been recently shown to maintain or induce 
specific adult stem cell lineages87,88. However, whether epigenetics may 
play a role in these settings remains to be determined. Together, these 
reports highlight that differing metabolomes are found in distinct cell 
states, and demonstrate the functional consequence of how changes in 
metabolism can affect and possibly specify cell fate. 

The haematopoietic lineage is another well-studied system that 
exhibits cell state transitions. Recent reports highlight a critical role for 
metabolism in driving immune cell activation and differentiation89,90. 
For example, T cells undergo rapid changes in glycolysis during activa-
tion91. There are additionally well-established roles for epigenetics in 
immune cell fate92: enhanced glycolysis-dependent acetyl-CoA produc-
tion in regulatory T cells has been shown to promote differentiation 
through increased histone acetylation93, and αKG has been reported to 
regulate context-specific gene reprograming for helper T-cell differen-
tiation94. Another example was observed in a Caenorhabditis elegans 
pathogen-feeding model, in which deletion of methionine synthase 
reduced the immune response to pathogens by preventing expression 
of protective genes dependent on histone methylation95. Future stud-
ies will undoubtedly uncover more links, and it will be interesting to 
examine how changes in nutrient availability as a result of metabolic 
competition with other cells96,97 or metabolite exchange affects immune 
cell metabolism, chromatin biology, and function.

A remaining question concerns how metabolism-dependent cell state 
changes affect the overall development of the organism. Tissue-type spe-
cific mechanisms for how metabolic changes affect development have 
started emerging98,99, and future studies will uncover how these may con-
trol cell fate, tissue morphogenesis and development through epigenetic 
mechanisms. Given that recent reports indicate systemic and distinct 
changes in histone methylation in early mammalian development100–102, 
it will be exciting to explore the role metabolism and perhaps diet has 
in these contexts. 

Metabolism and epigenetics in cancer biology
Altered metabolism is a hallmark of cancer2,4. For almost a century, 
malignant cells have been known to exhibit nutritional differences 
compared to normal cells28, and recent evidence supports that they also 
harbour epigenetic changes driven by their rewired cellular metabo-
lism39,41,103. A major breakthrough in our understanding of the connec-
tion between metabolism and epigenetics in cancer was the discovery 
of gain-of-function mutations to the genes encoding isocitrate dehy-
drogenase 1 (IDH1) and IDH2 that cause an altered enzymatic activity 
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Figure 3 Analogy of cancer-associated mutations found in growth signalling 
with those in metabolism-dependent chromatin-modifying processes. 
(a) During oncogenesis, cells gain growth factor independence by frequently 
acquiring mutations that co-opt normal growth signalling. Ras and Raf are 
commonly mutated in cancer and drive downstream signalling through MEK 
and ERK, which can lead to gene regulation by c‑Myc. Ras and growth factor 
signalling can activate the PI3K–AKT–mTOR signalling axis to promote 
cell growth and survival through downstream transcription factors such as 
HIF1α. Mutations to PI3K, AKT, PTEN, TSC and LKB1 are also common 
in cancer. Purple indicates oncogenes; blue indicates tumour suppressors; 
yellow star indicates common lesions in cancer; solid lines represent 
direct biochemical interactions; dotted lines represent indirect regulation. 
(b) Metabolism regulates normal physiological activity of chromatin-
modifying enzymes, which are commonly mutated in cancer. Glucose (Glc.) 
and amino acids (AAs) feed into the TCA cycle, which generates regulators 
of chromatin modifying enzymes such as αKG. Methionine (Met.) produces 
the methyl-donor SAM in the methionine cycle. With exception of IDH1/2, 
mutations in metabolic enzymes are uncommon in cancer, yet cancer-
associated mutations in chromatin modifiers such as DNMTs, TETs, HMTs, 
histone lysine demethylases (KDMs), and histones (H3K27 and H3K36) are 
prevalent, suggesting that cells may subvert the normal regulation of these 
enzymes by metabolism during transformation. Blue indicates enzymes 
that perform methylation reactions; green indicates enzymes that perform 
demethylation reactions; yellow star indicates common lesions in cancer. 
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resulting in the production of the (R)‑2-hydroxyglutarate (R-2HG) 
metabolite104,105. These mutations are recurrent and their consequences 
in tumorigenesis have been reviewed extensively elsewhere44. In brief, 
cells harbouring IDH1/2 mutations display DNA and histone hyper-
methylation as accumulation of 2HG inhibits the activity of TET-family 
DNA and JmjC-family histone demethylase enzymes106. These muta-
tions have been linked to pathogenesis of glioblastoma multiforme, acute 
myeloid leukaemia, chondrosarcoma, cholangiocarcinoma, and other 
human malignancies44.

Furthermore, mutations in the genes encoding fumarate hydratase 
(FH) and succinate dehydrogenase (SDH), the enzymes that catabo-
lize fumarate and succinate, have been identified in several sporadic 
and hereditary cancers and cause accumulation of their substrates107. 
High levels of fumarate and succinate can also inhibit αKG-dependent 
DNA and histone demethylases and loss of FH and SDH activity was 
shown to lead to hypermethylation of DNA and histone residues107,108. 
A recent report demonstrated that loss-of-function mutations in FH 
and the subsequent accumulation of fumarate promotes epithelial-to-
mesenchymal-transition (EMT) through fumarate-dependent inhibition 
of TET demethylases and subsequent induction of genes necessary for 
EMT109. FH was also found to be O‑GlcNAcylated, which caused changes 
in histone methylation110 and provided evidence for additional layers of 
metabolic regulation of chromatin. Indeed, a recent study proposed that 
a substantial portion of variation in DNA methylation profiles across all 
human cancers could be explained by differences in the expression of 
enzymes related to methionine and the one-carbon network111. Taken 
together, these studies define clear and sometimes quantitative roles for 
metabolism in specifying aspects of the epigenome. 

Cancer-specific deletions of other metabolic enzymes with implica-
tions in epigenetic regulation have also been reported. The gene encod-
ing 5‑methylthioadenosine phosphorylase (MTAP), a key enzyme in 
the methionine salvage pathway, is located near the ubiquitous tumour 
suppressor gene CDKN2A and the two are commonly co-deleted112,113, 
with the loss of MTAP thought to be a passenger event in cancer progres-
sion. However, recent reports have established a collateral dependency in 
CDKN2A-deleted tumours in which loss of MTAP causes accumulation 
of methylthioadenosine, the metabolite cleaved by MTAP, leading to 
inhibition of the PRMT5 protein arginine methyltransferase, which is 
required for tumour growth112,113. The importance of methionine-derived 
SAM in regulating cell state and epigenetics73,74 suggests that there could 
be instances where changes in SAM levels due to loss of the methionine 
salvage pathway have dramatic effects on chromatin state, which would 
support a more active role for MTAP in cancer development. However, 
whether MTAP/CDKN2A-deleted cancers display an altered chromatin 
state remains to be determined.

As discussed, although alterations in genes encoding metabolic 
enzymes have been identified in cancer, overall they are rare. In 
contrast, lesions in genes related to cancer-associated growth signal-
ling pathways and downstream transcription factors are common114. 
Indeed, the ability of cancer cells to obtain growth factor independ-
ence by acquiring mutations that allow them to constitutively engage 
signalling pathways that control cell growth, survival, and prolifera-
tion is a recognized hallmark of oncogenesis. Mutations in enzymes 
that modify chromatin and DNA are recurrent and constitute a more 
recently defined class of cancer-associated mutations66 that often result 
in aberrant chromatin and DNA epigenomic profiles. It is tempting to 

speculate that the function of these mutations is to uncouple their status 
from the interaction with metabolism and thus subvert this normal 
epigenetic regulation by nutrition and metabolism (Fig. 3). However, 
further studies are needed to better define the relationship between the 
normal metabolic regulation of chromatin and the cancer-associated 
chromatin mutations. 

A major goal in studying metabolism-dependent epigenetic 
mechanisms in cancer is the hope of identifying targetable liabilities. 
Encouragingly, small molecules targeting mutant IDH1/2  are now 
very advanced clinically115. At the preclinical level, a study on nutrient 
heterogeneity of the tumour microenvironment reported that the core 
regions of melanoma tumours had enhanced histone methylation as a 
result of reduced αKG levels, which led to resistance to BRAF inhibi-
tor treatment, and the combination of histone methyltransferase and 
BRAF inhibitors was sufficient to overcome resistance116. Separately, 
the SGOC network was shown to be upregulated in liver kinase B1 
(LKB1)-deficient tumours with KRAS activation and could be coupled 
to SAM generation, causing enhanced DNA methyltransferase activ-
ity and elevated DNA methylation117. This study indicated that LKB1-
deficiency could be a key vulnerability as DNA methyltransferase and 
serine metabolism inhibition reduced tumour growth117. A distinct 
line of work on the evolution of distant metastases of pancreatic ductal 
adenocarcinoma (PDAC) demonstrated that the oxidative branch of the 
pentose phosphate pathway (oxPPP) was a driving force for epigenome 
landscape reprogramming and the fitness of metastatic cells118, suggest-
ing that targeting the oxPPP could be effective in metastatic PDAC. 
Together, these studies represent a few examples of how advances in 
our understanding of metabolic effects on epigenetics can be translated 
into potential therapies.

Future directions
Much remains unanswered in each of the areas discussed in this Review 
Article. The key element of the biochemistry is that enzymatic param-
eters such as Km, Vmax, and allosteric and inhibitory binding constants 
must be tuned to values that can limit enzyme activity. Although there 
is ample evidence that this can be achieved in pathophysiological condi-
tions such as the presence of IDH1/2 or FH mutations, resulting in mil-
limolar concentrations of 2HG in the case of IDH1/2 (ref. 105), which 
is well above the inhibitory constant of dioxygenase enzymes, there is 
accumulating albeit far less evidence that such regulation occurs in 
physiological conditions119 (Table 1). 

Additional complications that limit our understanding are potential 
differences in enzymatic parameters measured under conditions in vitro 
versus in vivo, and the difficulty in obtaining accurate measurements 
of exact concentrations in vivo, especially when the relevant concen-
tration is compartmentalized in cells. Thus, more studies are needed 
to define physiological conditions in which the concentration dynam-
ics of relevant substrates and cofactors causally underlie a change in 
chromatin state. It will also be necessary to clarify the extent to which 
environmental variables such as diet, which have profound effects on 
cancer outcome120 and cell fate121, can modulate epigenetics by altering 
levels of the relevant metabolites to the needed concentrations.

A further complexity is that enzymes for both activating and repres-
sive histone marks require metabolites. Thus, the precise input of cellular 
metabolism into the complex arrangement of multiple modifications 
on histones and DNA that have distinct functions remains an open 
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question. For example, how do changes in the levels of metabolites such 
as SAM lead to predictable changes in gene expression? In addition, 
poorly understood layers of regulation that define the specificity of the 
chromatin–metabolite link probably exist. For instance, the formation 
of multiprotein complexes in which enzyme activities are affected by 
dynamic protein interactions and their localization to specific sites of 
the genome would occur in parallel with metabolite changes that also 
affect enzyme activity, increasing the level of regulatory complexity 
that further work is expected to elucidate in the coming years. Finally, 
although expression levels of metabolic network components appear to 
be to some extent predictive of DNA methylation levels111, how predic-
tive metabolite levels are of the overall chromatin state and epigenetic 
phenotype remains largely unknown. As we know, many other factors, 
such as gene expression, influence chromatin state and much of the study 
of epigenetics and chromatin biology was historically conducted without 
consideration of metabolic influences. How the magnitude of the meta-
bolic effects on the activity of chromatin-modifying enzymes compares 
relative to transcriptional programs that control the expression of these 
enzymes remains unknown. 

Moreover, our understanding of the genetic basis for how stable 
chromatin states or traits can be established through metabolic changes 
is very limited. In addition, although certain architectural aspects of 
chromatin modifications, such as peak shape, are known to encode 
information about phenotype12,13, the specific aspects of genomic archi-
tecture that may be affected by metabolites remain unknown. Our cur-
rent knowledge of metabolic regulation of chromatin structure focuses 
on individual covalent chromatin marks, but the effect on higher-level 
chromatin structure such as genome folding and chromatin accessibility 
remains to be elucidated.

In stem and developmental biology, there are numerous exam-
ples of cell type transitions that show concomitant changes in metabo-
lism and the chromatin landscape. Nevertheless, there are few examples 
that show that a metabolic change leads to a biological outcome due to a 
specific effect on chromatin or DNA modifications and independently 
of all other effects that may occur alongside this change in metabolite 
levels. This complexity results from the fact that metabolites involved in 
epigenetics are also connected to larger metabolic networks that affect 
nearly all aspects of cellular physiology. New CRISPR–Cas9-based tech-
nologies that can engineer posttranslational modifications at specific 
genomic loci, when combined with defined metabolic perturbations, 
may address some of these challenges122–124.	

In cancer, although there is much interest in targeting both 
altered metabolism and altered epigenetics, whether these two hall-
marks confer dependencies in tumours synergistically is unknown, 
with the exception of a few examples115,116,117,118. The same difficulties 
in establishing causal links apply also in this setting. In that respect, 
exploring metabolic dependencies in settings where a genetic lesion 
modifies chromatin, as in MLL-rearranged leukaemias125,126 or paediatric 
brain tumours and sarcomas with histone mutations127,128, might prove 
fruitful as these cases could be particularly susceptible to a disruption 
in metabolism. 

Although our understanding remains at a very early stage, rapid pro-
gress is expected, especially considering the techniques that are avail-
able for chromatin and metabolic state characterization, and cell culture 
methods, including organoid systems, that can model and manipulate 
physiological metabolism more effectively119,129–133. This wealth of 

technology available to probe and interpret both chromatin status and 
metabolism and the collective interest in both subjects raise optimism 
that rapid progress will continue to be made.
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