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SUMMARY
The nutritional source for catabolism in the tricarboxylic acid (TCA) cycle is a fundamental question in meta-
bolic physiology. Limited by data andmathematical analysis, controversy exists. Using isotope-labeling data
in vivo across several experimental conditions, we construct multiple models of central carbon metabolism
and developmethods based onmetabolic flux analysis (MFA) to solve for the preferences of glucose, lactate,
and other nutrients used in the TCA cycle. We show that in nearly all circumstances, glucose contributes
more than lactate as a substrate to the TCA cycle. This conclusion is verified in different animal strains
from different studies and different administrations of 13C glucose, and is extended to multiple tissue types.
Thus, this quantitative analysis of organismal metabolism defines the relative contributions of nutrient fluxes
in physiology, provides a resource for analysis of in vivo isotope tracing data, and concludes that glucose is
the major nutrient used in mammals.
INTRODUCTION

Cellular metabolism that resides within tissues utilizes many me-

tabolites as their source in the TCA cycle such as glucose,

lactate, amino acids, and fatty acids. As part of systemic meta-

bolism, each cell has unique preferences for the utilization of

particular metabolites, which is influenced by tissue type, cell

state, environmental factors such as nutrition, and physiological

status. The nutrient preferences are critical for normal organ

function and closely linked to disease. For example, the fermen-

tative glucose metabolism known as the Warburg effect has

been widely found in numerous types of healthy and malignant

cells (Liberti and Locasale, 2016), but glucose utilization is highly

variable and depends on genetics and environment (Faubert

et al., 2017; Feron, 2009; Hensley et al., 2016). Those specific

metabolic fluxes could be potential targets for cancer treatment

(Liberti et al., 2017; Sonveaux et al., 2008). For other tissues like

the myocardium, the energy contribution from fatty acids,

glucose, lactate, and others is thought to directly reflect its

nutrient and oxygen availability, and have important roles in car-

diology (Kodde et al., 2007; Ma et al., 2019). Therefore, an inves-

tigation of nutrient source utilization in physiological conditions is

of utmost importance.

To quantitate different nutrient sources, isotope-labeling-

based methods have long been used. Cells or animals are

fed or infused with isotopically labeled substrates, and label-
Cell Metab
ing ratios of metabolites are analyzed by mass spectrometry

(MS) or nuclear magnetic resonance (NMR). Previous studies

have used these data to qualitatively explain the contribution

of nutrient sources to the TCA cycle (Stanley et al., 1988).

However, those studies have been limited by measurements

that often included only a few metabolites. Recent studies

have looked to quantitatively measure the utilization of

nutrient sources at the systemic level using metabolic flux

analysis (MFA) (Hui et al., 2017; Jang et al., 2019; Neinast

et al., 2019). MFA is a mathematical framework that seeks a

solution of metabolic fluxes that best fits the isotope labeling

data (i.e., using machine learning or artificial intelligence) for a

given biochemical reaction network (Dai and Locasale, 2017;

Zamboni et al., 2009). The biochemical model used is essen-

tial for the resulting solutions. For instance, reversible (i.e., ex-

change) fluxes of metabolites between tissue and plasma are

almost always significant and may highly influence isotope la-

beling patterns (Witney et al., 2011). However, many MFA

models do not consider exchange fluxes (Hui et al., 2017).

Another important point is the heterogeneity of metabolism.

Some studies have shown that metabolic heterogeneity exists

widely within and between lung cancers (Hensley et al., 2016).

Organismal metabolism relies on mutual cooperation between

tens of organs and tissues. However, most current MFA

models consider the flux calculation in one kind of tissue

and assume the tissue is a homogeneous system.
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Figure 1. General Methodology and Flux

Analysis

(A) Diagram of metabolite exchange between

source and sink tissues. Glycogen, amino acids,

and other nutrition sources are utilized to supple-

ment glucose in the source tissue.

(B) Three components (source tissue, plasma, and

sink tissue) and two circulating metabolites (lactate

and glucose).

(C) Data acquisition. Tissues of 13C-infusedmice are

extracted and analyzed by mass spectrometry.

Distribution of mass isotopomers for metabolites,

such as glucose, lactate, and pyruvate, are used to

solve for the fluxes (B).

(D) Definition of cost function. The flux vector is used

to predict MID of target metabolites and compared

with experimental MID to calculate cost function.

(E) Schematic and example of a feasible solution.

The solution with cost function lower than a

threshold is considered a feasible solution and will

be utilized in the following analysis.
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To investigate the quantitative contribution of nutrient sources

into the TCA cycle under physiological conditions, we developed

a framework to overcome current challenges. Multiple tissues

are considered, linked by circulation. This model also uses the

MFA framework and requires isotope-labeling data for different

tissues to fit fluxes in different compartments. Surprisingly, we

found that under physiological conditions, as we validated using

different animal models and experimental isotope labeling con-

ditions, most tissues utilize circulating glucose more than lactate

for the TCA cycle, which may challenge current dogma in meta-

bolic physiology.

RESULTS

Model Construction and Flux Analysis
In the fasting state, systemic metabolism involves a source tis-

sue (usually liver) that converts circulating lactate to glucose in

blood, and a sink tissue that consumes glucose back to lactate,

which is referred to as the Cori cycle (Nelson et al., 2017) (Fig-

ure 1A). Glucose and lactate in the source and sink tissues are

interconverted through pyruvate. Sink and source tissues are
620 Cell Metabolism 32, 619–628, October 6, 2020
connected through plasma, which allows

for the transport of glucose and lactate

(Figure 1B).

Fluxes are computed based on data from

MS in 13C-glucose infused mice as follows.

After infusion, tissues are collected and

analyzed by MS. Metabolites with 13C at

different positions are distinguished and

their relative abundance is referred to as

themass isotopomer distribution (MID) (Fig-

ure 1C). MID data are then used to fit the

fluxes in the model. Given a set of fluxes,

MIDs are calculated and compared with

experimental data. The difference (i.e.,

cost function) between the estimated MIDs

and experiments, measured by a standard

metric used in Information Theory, the Kull-
back-Leibler divergence (KullbackandLeibler, 1951), isminimized

to find a set of fluxes that best fits the data. Next, statistical sam-

pling is conducted to find all sets of fluxes that can be considered

as valid solutions (Figures 1D and 1E; STAR Methods). Additional

constraints are then introduced to ensure the simulated fluxes are

physiological feasible, such as requirements for minimal TCA flux

values in the source and sink tissues (STAR Methods).

The model was first fit, and fluxes were computed using data

from a recent study (Hui et al., 2017). Among all calculations of

fluxes obtained from our algorithmic procedure (Figures 1C–

1E), the MIDs of most metabolites can be predicted by the cur-

rent model (Figures S1A–S1H), and the values of the fluxes in

the model are physiologically feasible (Figure S1I). The value of

the cost function for the set of fluxes computed is also signifi-

cantly lower than what is obtained from considering randomized

data, indicating that the values of fluxes computed are statisti-

cally significant (STAR Methods; Figures S1J–S1P).

Glucose Contributions in Different Tissues
The flux network can be mathematically defined with a simplified

diagram: the TCA cycle in the source and sink tissue is fed by two
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fluxes from glucose and lactate in plasma (Figure 2A; STAR

Methods). Non-negative contribution fluxes to TCA cycle from

glucose (Fglc in source tissue and Gglc in sink tissue) or from

lactate (Flac in source tissue andGlac in sink tissue) are calculated

from net fluxes of related reactions and diffusion (STAR

Methods). From the computed fluxes, two glucose contribution

ratios, a local oneRglc and a global oneR0
glc, are defined to reflect

the relative ratio of glucose contribution to the TCA cycle. The

local value Rglc distinguishes the glucose flux from circulating

metabolites into the sink tissue and from the source tissue, while

the global ratio R0
glc reflects the general glucose contribution in

the complete model, which includes both sink and source tissue.

IfRglc orR
0
glc is higher than 0.5, it implies that glucose contributes

more than lactate to TCA cycle in sink tissue or in the complete

model, respectively. On the contrary, if it is lower than 0.5, lactate

contributes more than glucose (Figures 2B and S2A).

To evaluate the glucose contribution, feasible solutions are

sampled from the solution space and displayed in a violin plot

(Figure 2C). The source tissue is the liver and the sink tissues

are set as heart, brain, skeletal muscle, kidney, lung, pancreas,

small intestine, and spleen. For each combination of sink and

source tissue, the model is fitted with data from mice infused

by glucose and lactate. The local glucose contribution ratios

Rglc tend to locate in extreme values in sampled feasible solu-

tions and display a bimodal distribution (STAR Methods). In the

fitted results, they largely concentrate around 1 in most of

infused mice when fitting with different types of sink tissue (Fig-

ures 2D–2K). The global glucose contribution ratios R0
glc show

continuous distributions, and the median of the distribution in

all types of sink tissue is higher than 0.5 (Figures S2B–S2I).

Therefore, those results show that in almost all cases glucose

contributes more than lactate does to the TCA cycle.

The results from these two-tissuemodels rely onMID data and

some parameters. To evaluate these dependencies, we imple-

mented a Monte Carlo-based sensitivity analysis (Shestov

et al., 2014). First, original data and parameters are perturbed

randomly. The perturbed values are used to calculate distribu-

tion of the local contribution Rglc as previously described. After

this process, themedian of this distribution under each individual

perturbation is collected, and the distribution of median Rglc re-

flects its sensitivity to data and parameters (Figure 3A). Results

show that themedian value of Rglc is very robust to perturbations

in glucose circulatory flux and input flux, but more sensitive to

the value of lactate circulatory flux and the MID data (Figures

3B–3E). However, in most parameter sets, the median Rglc is still

higher than 0.5 (Figures 3C and 3E). These results demonstrate

the robustness of the conclusion that glucose contributes

more than lactate to the TCA cycle under physiological

conditions.

One confounding issue is that the process of tissue harvesting

may induce ischemia and hypoxia. Hypoxia will induce elevated

glycogenolysis in source tissue and glycolysis in sink tissue,

which may significantly change measured MID of metabolites

(Figure S3A). To estimate its effect on the final conclusion, a

correction is introduced to simulate these effects under hypoxia.

Measured MIDs of glucose in source tissue and lactate in sink

tissue are assumed to be amixture of 80% real MID in physiolog-

ical state and 20% MID of newly synthesized metabolites in

elevated reactions under hypoxia (Figure S3B). Specifically,
glucose in source tissue is assumed to be mixed with unlabeled

glucose, and lactate in sink tissue is assumed to be mixed with

lactate synthesized from pyruvate, which has the same MID as

pyruvate. Therefore, the physiological MID can be solved for

and utilized for the same analysis of glucose contribution.

Compared to results before the correction, conclusions were

not altered, and in most cases, the median of the glucose contri-

bution ratio remained higher than 0.5. These results indicate that

glucose contributes more than lactate is robust to hypoxia con-

siderations (Figures S3C and S3D).

Generality of the Glucose Contribution to the TCA Cycle
To further investigate the generality of this conclusion, we

considered a different animal strain, different diet, and different

infusion protocol with mice infused with 13C-glucose at a higher

infusion rate, which is one of the key technical variables of

consideration in these studies (Ayala et al., 2010). In addition to

our analysis of published data (Hui et al., 2017), these new exper-

iments expand the scope of physiological variables (Figure 4A).

These data are referred to as ‘‘high infusion rate,’’ while the pre-

vious analysis is referred to as ‘‘low infusion rate.’’ Importantly,

with the higher infusion rate, the glucose, lactate, and insulin

levels in plasma are not significantly altered during the infusion

(Figure 4B). Because of the higher infusion rate, an input flux

Jin in plasma is added to the model to capture the infusion oper-

ation (Figure 4C). The amount of 13C labeling increases with the

infusion rate, and with a higher infusion rate, the model predicts

the MIDs (Figure S4A). In this case, the cost function is also

significantly lower than that obtained from a random unfitted

control for the four glucose-infused mice in the higher infusion

rate experiments (Figure 4D), and the value of all fluxes is phys-

iologically feasible (Figure S4B). As defined previously, the local

contributionRglc and global contributionR0
glc to the TCA cycle are

calculated for the pair of source tissue (liver) and sink tissue

(skeletal muscle) for all mice (Figures 4E and S4C). The analysis

shows that in most mice, Rglc and R0
glc are both higher than 0.5,

again implying that glucose contributes more than lactate to the

TCA cycle (Figures 4F and S4D).

Glucose Contribution upon Consideration of Multiple
Tissue Interactions
The current model is based on source and sink tissues. However,

mammals consist of tens of different tissues that cooperate and

interact. To demonstrate the utility of thismodel tomultiple tissue

compartments, more sink tissues are introduced and the

glucose contribution under these conditions is analyzed. This

model contains one source tissue and two sink tissues, which

are connected by glucose and lactate in plasma (Figures 5A

and 5B). This model is fit with the low infusion rate data, in which

source tissue is liver and two sink tissues are combinations from

heart, brain, and skeletal muscle. The fitting is sufficiently precise

(Figure S5A), implying that computed fluxes are physiologically

feasible (Figure S5B). The cost functions of all combinations

are also significantly lower than a random unfitted control (Fig-

ure S5C). In this model, glucose and lactate in plasma can

contribute to the TCA cycle through three kinds of tissue, and

therefore the definitions of local and global glucose contribution

ratios Rglc and R0
glc are slightly modified (Figures 5C and S5D).

Fitting results show that in all three combinations of two sink
Cell Metabolism 32, 619–628, October 6, 2020 621
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Figure 2. Contribution to the TCA Cycle from Circulating Glucose

(A) Diagram of contribution fluxes. Glucose and lactate contribute to the TCA cycle by Fglc and Flac in the source tissue, while Gglc and Glac are related to the sink

tissue. The direction of net flux between circulating glucose and glucose in source tissue is variable in different solutions.

(B) Definition of global glucose contribution ratio Rglc based on fluxes in (A). The global glucose contribution Rglc is defined as the relative ratio of glucose

contribution flux to total contribution flux in sink tissue. Rglc is a scalar between 0 and 1, and higher Rglc represents higher glucose contribution to the TCA cycle.

(C) Procedure to compute distribution of glucose contribution. Feasible solutions are sampled and glucose contribution ratios are calculated. The distribution of

glucose contribution is displayed by a violin plot.

(D–K) Distribution of local glucose contribution based onmodels with different sink tissues. For each sink tissue, the source tissue is liver, and contribution ratio is

calculated from data in 7 different mice. For most kinds of sink tissue, the median of glucose contribution is higher than 0.5 in most mice, which means glucose

contributes more than lactate to the TCA cycle. The orange dash line represents 0.5 threshold. Dataset is from glucose-infused mice (M1, M5, and M9) and

lactate-infused mice (M3, M4, M10, and M11) in Hui et al. (2017).
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Figure 3. Parameter Sensitivity Analysis

(A) Original MID data or constraint parameters are randomly perturbed and used in the following analysis. The resulting distribution of the local glucose

contribution for each perturbation is calculated, and their medians are collected. Distribution of medians reflects parameter sensitivities for this model.

(B–E) The distribution of medians under perturbation of glucose circulatory flux (B), lactate circulatory flux (C), input flux in source tissue (D), and MID data (E).

Although the local contribution ratio is more sensitive to lactate circulatory flux andMID data, most of the medians are above the 0.5 threshold, which implies that

under most perturbations, glucose contributes more than lactate to the TCA cycle. Dataset is from glucose-infusedmouseM1 in Hui et al. (2017). Source tissue is

liver and sink tissue is heart.
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tissues, glucose contributes more than lactate to the TCA cycle

regardless of the definition of glucose contribution ratio (i.e.,

local or global contribution ratio) used (Figures 5D and S5E).

Glucose Contribution upon Consideration of Multiple
Nutrient Sources
The current analysis considers two circulating metabolites as

sources for the TCA cycle: glucose and lactate. However,

many other metabolites circulate and are exchanged between

tissue and plasma, such as acetate, alanine, and pyruvate (Hui

et al., 2017; Liu et al., 2018). Therefore, to investigate the appli-
cability of this model, circulating pyruvate is introduced (Fig-

ure 6A). Circulating pyruvate can also represent other nutrient

sources including, but not limited to, alanine, glutamine, acetate,

or fatty acids. In this model, circulating pyruvate is not only

exchanged with sink and source tissue, but also converted to

lactate in plasma. Glucose and lactate in plasma can also be

directly converted to pyruvate (Figure 6B). This model predicts

the experimental MID with both low infusion rate and high infu-

sion rate data (Figures S6A and S6B) with the physiologically

feasible fluxes (Figures S5C and S5D). The distribution of values

of the cost function is also significantly lower than random
Cell Metabolism 32, 619–628, October 6, 2020 623
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Figure 4. Robustness of Results Regarding Animal Strain and Infusion Rate

(A) Diagram of comparison between two experiments. A higher infusion rate and longer infusion time are introduced, which leads to higher abundance of 13C

labeling in most metabolites. The genetic background and diet are also different from previous experiments.

(B) Time course data for concentrations of glucose, lactate, and insulin in plasma during infusion. Each color represents a specific mouse. In the insulin mea-

surement, a data point at 1 h of red line is removed because of a significantly abnormal value.

(C) Structure of high infusion model. The main difference is 13C-labeled infusion to glucose in plasma.

(D) Distribution of cost function fitted with data from different mice or unfitted control data. U-statistics of a rank-sum test and p values are displayed.

(E) Definition of local glucose contribution Rglc. Glucose and lactate in plasma contribute to the TCA cycle in the source and sink tissue. Direction of net flux

between circulating glucose and glucose in source tissue is variable in different solutions. The local glucose contribution Rglc is defined as the relative ratio of

glucose contribution flux to total contribution flux in sink tissue.

(F) Distribution of local glucose contribution shows glucose contributesmore than lactate to the TCA cycle inmost cases. Fits from different mice are displayed. In

all subfigures, the source tissue is liver and sink tissue is skeletal muscle.
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Figure 5. Flux Analysis across Multiple Tissues

(A) A model with additional sink tissues.

(B) Structure of the multi-tissue model. One source tissue and two sink tissues are connected by glucose and lactate in the plasma.

(C) Definition of local glucose contribution Rglc. Glucose and lactate can contribute to TCA by Fglc and Flac in the source tissue, Gglc and Glac in the sink tissue 1,

and Hglc and Hlac in sink tissue 2, respectively. Direction of net flux between circulating glucose and glucose in source tissue is variable in different solutions. The

local glucose contribution is defined as the relative ratio of glucose contribution flux to total contribution flux in two kinds of sink tissue.

(D) Distribution of local glucose contribution shows glucose contributes more than lactate to the TCA cycle in all combinations of sink tissues. The model is fit by

glucose-infused mouse M1 from the low-infusion data in Hui et al. (2017). The source tissue is liver and the sink tissue 1 and 2 are two from heart, brain, and

skeletal muscle, respectively.

ll
Article
unfitted control in all kinds of sink tissue fitted with the low-

infusion data (Figure S6E), or in the skeletal muscle fitted

with the high-infusion data, indicating statistical significance

(Figure S5F).

Because circulating glucose, lactate, and pyruvate each con-

tributes to the TCA cycle in source and sink tissues, the local

contribution ratios of the three metabolites Rglc, Rlac, and Rpyr

need to be calculated individually, as well as three global contri-

bution ratios R0
glc, R

0
lac, and R0

pyr , and the sum of the three local or

global contribution ratios equals to 1 (Figures 6C and S6H). The

distribution of three ratios can be displayed by a ternary plot
(Harper et al., 2015; STAR Methods). For the low infusion rate

data, the local contribution from glucose is predominantly higher

than lactate and pyruvate (Figure 6D), and the conclusion is

similar when the sink tissue in the model is replaced by other

types of tissue (Figure S6G). For the global contribution, contri-

bution from glucose is close to or slightly lower than lactate,

which are both significantly higher than pyruvate (Figure S6I).

The situation is similar in the high infusion rate data, in which

the local contribution from glucose markedly dominates in all

sampled solutions, but the global contribution from glucose is

closed to lactate (Figures 6E and S6J). Therefore, in a model
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Figure 6. Model with Multiple Circulating Me-

tabolites Feeding the TCA Cycle

(A) Incorporation of additional circulating

metabolites.

(B) The structure of themodel. The source tissue and

sink tissue are connected with glucose, lactate, and

pyruvate in the plasma.

(C) Definition of local contribution from metabolites

Rglc, Rlac, and Rpyr . Glucose, lactate, and pyruvate

can contribute to the TCA cycle by Fglc, Flac, and Fpyr

in source tissue and Gglc, Glac, and Gpyr in the sink

tissue. Direction of net flux between circulating

glucose and glucose in source tissue is variable in

different solutions. The local contribution ratios of

three metabolites Rglc, Rlac, and Rpyr are defined by

the relative ratio of the contribution flux from each

metabolite to total contribution flux of all three me-

tabolites in sink tissue.

(D) Ternary plot to display distributions of local

contributions from three metabolites. The orange

point indicates average level. The model is fit by

glucose-infused mouse M1 from low-infusion data.

The source tissue is liver and sink tissue is heart.

(E) Analysis and results as in (D) but for additional

high-infusion system of different animal strain,

different diet, and different infusion protocol. The

model is fitted by glucose-infused mouse M1 from

the high-infusion data. The source tissue is liver and

sink tissue is skeletal muscle.

ll
Article
with more metabolites in the circulatory system, circulating

glucose contributes more than lactate to the TCA cycle for mul-

tiple sink tissues, and has a similar contribution than does lactate

when taking into account contributions from both the sink and

source tissue.

DISCUSSION

The nutrient sources for the TCA cycle have long been of interest.

However, due to difficulties in data acquisition andmathematical

analysis, quantitative studies under physiological conditions are

still rare. With advances in MS and mathematical modeling,

in vivo flux analysis studies with isotope-labeling data have

become a mainstay in the study of metabolic physiology. Previ-

ous studies havemeasured TCA cycle source utilization byMFA.

However, with the development of these new mathematical

tools, our study challenges some key conclusions that form the

current consensus for the relative contributions of lactate and

glucose to the TCA cycle. For example, it was reported that

lactate is the major energy source for most tissues and tumors

(Hui et al., 2017; Jin et al., 2019). Our results show that most or-

gans take up more glucose than lactate to fuel the TCA cycle.

This conclusion also holds under various parameters, experi-
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mental conditions such as animal strain

and diet, tissue type, tissue interactions,

and source metabolite number, which

together indicate the robustness and

generalizability of the conclusions. Our re-

sults, however, are consistent with conven-

tional knowledge that glucose behaves as

a primary energy source in cells and tis-
sues, especially for neural systems (Nelson et al., 2017). Never-

theless, our results confirm that lactate is highly exchanged be-

tween tissue and plasma, while glucose is transferred from the

liver to other organs. These phenomena appear to also be

observed in recent studies on flux measurements in pigs (Jang

et al., 2019).

In addition to addressing an important issue in metabolic

physiology, our study provides a framework for metabolic flux

analysis in physiological conditions. Compared with previous

studies, the first improvement is that fluxes calculated by our

model can capture more aspects of metabolic biochemistry.

For example, the flux from pyruvate to glucose (G6/H6), the

gluconeogenesis flux in sink tissue, relies on phosphoenolpyr-

uvate carboxykinase (PEPCK), which only expresses in a few

kinds of tissue such as liver, kidney, and adipose tissue (Geiger

et al., 2013). Therefore, G6/H6 fluxes are very small inmost of our

fitting results (Figures S1I, S4B, S5B, S6C, and S6D). Another

example is high diffusion and exchange of lactate between tis-

sue and plasma, which is usually overlooked, but captured by

our model (F3/F4, G3/G4, and H3/H4 in Figures S1I, S4B, S5B,

S6C, and S6D) and validated by experimental measurements

(Jang et al., 2019). The second improvement is that, rather

than fitting the model with a single solution, we sampled the
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entire high-dimensional solution space and analyzed all feasible

results. Thosemillions of sampled points can cover more regions

in solution space and precisely reflect real distribution of fluxes,

especially in a complicated model. The third improvement is

more considerations for con analysis for parameter sensitivity

than in previous studies. This study verified the robustness of

the conclusions not only under random perturbation of parame-

ters and MID data, which accounts for uncertainties in experi-

mental precision, but also may account for hypoxia, which intro-

duces systematic experimental bias. These analyses serve to

extend much of the metabolic flux analysis framework that was

developed for cell systems to physiological conditions.

Another intriguing feature of this model is its generalizability

and scalability. From a basic two-tissue version, this model is

readily extended to compute fluxes from isotope patterns with

higher infusion rates, more tissue types, and more nutrient sour-

ces, which could be useful to study, for example, different nutri-

tional situations and pathophysiology states such as metabolic

syndromes, diabetes, and cardiovascular disease. The general-

ity of this model allows for a broader usage in future research.

More kinds of tissue can be introduced to better mimic the phys-

iological condition such as the interaction between cancer and

host organs. As the number of tissues considered increases,

their roles could bemore complicated rather than a single source

and sink. For example, previous research indicates that the kid-

ney may also have a significant contribution to net production of

glucose in pigs (Jang et al., 2019). Second, more nutrient sour-

ces could be introduced and the metabolic network in each

cell could also be expanded. The current model includes three

nodes: glucose, pyruvate, and lactate, which capture fluxes in

central carbon metabolism but could be extended into interme-

diary metabolism. Although sufficient for analyzing the contribu-

tion of macronutrients, studies of fatty acids, ketosis, and amino

acid metabolism will require a larger network. Nevertheless, the

methodology contained within this model could be extended.

For instance, subcellular compartmentalized metabolic flux

analysis is also important (Lee et al., 2019). However, its applica-

tion is usually restricted to the mitochondria and nucleus

because of the difficulty in acquiring isotope-labeling data in

each cellular compartment. On the other hand, interactions

within heterogenous tissues could also be described by this

model. It has been widely shown that cells in a tumor may ex-

press different metabolic states and will compete or cooperate

for many resources (Hensley et al., 2016). Quantitative methods

based on this model may help to better describe those compli-

cated interactions.

Limitations of Study
Our ability to resolve metabolic fluxes is first limited by the data.

Thus, limited by data and then computational techniques, this

model covers only a small portion of biochemical reactions. Spe-

cifically, this model combines all fluxes in the TCA cycle into one

unidirectional flux that gives an overall rate, because adding

those fluxes and metabolites to the model will not largely

improve fitting precision of the current fluxes, but will increase

the dimensionality of the solution space and thus increase the

uncertainty of the results (STAR Methods). Therefore, this model

may not fit the MID of somemetabolites connected with TCA cy-

cle. For example, pyruvate can feed the TCA cycle and change
the MID of metabolites in it, but it can also be fed by cataplerotic

fluxes of the TCA cycle. Consequently, the MID of pyruvate will

be coupled with metabolites in the TCA cycle and cannot be pre-

cisely described as the model currently stands. Another limita-

tion is the high dimensionality of the solution space in light of

limited available constraints. In our models, high dimensionality

requires sampling algorithms to measure the solution space.

As the model expands, these algorithmic challenges become

more difficult. Thus, more constraints must be introduced to

reduce the dimensionality of the feasible solution space. For

example, our study includes constraints from circulatory fluxes

(Hui et al., 2017), and some MFA models use fixed biomass

fluxes as boundary conditions (Reid et al., 2018). However, the

application of these external constraints requires additional as-

sessments, and they may introduce bias. Heterogeneity of those

constraints in different individual systems should also be evalu-

ated. Comprehensive and precise model analysis requires more

effort to establish reliable constraints as well as acquisition of

metabolite data with more coverage and higher resolution.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

[13C6]-D-glucose Cambridge Isotope Laboratories Cat#CLM-1396-1

2-hydrazinoquinoline Sigma-Aldrich Cat#CDS000062

Acetonitrile, Optima LC/MS Fisher Scientific Cat# A955

Water, Optima LC/MS Fisher Scientific Cat# W6

Methanol, Optima LC/MS Fisher Scientific Cat# A456

Ammonium hydroxide, Optima LC/MS Fisher Scientific Cat#A470

Formic acid, Optima LC/MS Fisher Scientific Cat#A117

Acetic Acid, Glacial Fisher Scientific Cat#A38

Ammonium hydroxide, Optima LC/MS Fisher Scientific Cat#A470

Deposited Data
13C isotope labeling data (low-infusion) Hui et al., 2017 https://doi.org/10.1038/nature24057
13C isotope labeling data (high-infusion) This paper https://github.com/LocasaleLab/

Lactate_MFA/blob/master/data/

data_collection_from_Dan.xlsx

Time-series concentration data of

circulating metabolites in plasma

This paper https://github.com/LocasaleLab/

Lactate_MFA/blob/master/data/

related_data_from_dan.xlsx

Experimental Models: Organisms/Strains

Mouse: C57BL/6J The Jackson Laboratory Stock No. 000664

Mouse: Pax7CreER-T2 Laboratory of Chen-Ming Fan, Carnegic

Institution for Science

N/A

Mouse: p53fl/fl Laboratory of Anton Berns, the Netherlands

Cancer Institute

N/A

Mouse: LSL-NrasG12D The Jackson Laboratory Stock No. 008304

Software and Algorithms

Sieve 2.0 ThermoFisher Scientific https://portal.thermo-brims.com/index.

php/component/thermosoftwares/

thermosoftware/67?Itemid=121

NumPy Open source software https://numpy.org/

SciPy Open source software https://www.scipy.org/

Matplotlib Open source software https://matplotlib.org/

xlrd python-excel https://github.com/python-excel/xlrd

tqdm tqdm https://github.com/tqdm/tqdm

python-ternary marcharper https://github.com/marcharper/python-

ternary

Docker Docker Inc. https://www.docker.com/
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for reagents may be directed to and will be fulfilled as appropriate by the Lead Contact, Jason W.

Locasale (dr.jason.locasale@gmail.com).

Materials Availability
This study did not generate new unique reagents.
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Data and Code Availability
The low-infusion dataset is available in previous work (Hui et al., 2017). The time-series concentration data of metabolites in plasma,

the high-infusion dataset and all source codes are available from GitHub (https://github.com/LocasaleLab/Lactate_MFA). Scripts in

this study are implemented in Python 3.6. The package version dependency is also provided on GitHub website. A Docker on Linux

system for out-of-the-box running is also available on Docker Hub (https://hub.docker.com/r/locasalelab/lactate_mfa). Each model

requires around 10 �50 h of running time.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal
All animal procedures were approved by the Institutional Animal Care andUseCommittee (IACUC) at Duke University. Mousemodels

is from 8 to 10-week old, male and female mixed background (129/SVJae and C57BL/6) with a combination of alleles that have been

previously described: Pax7CreER-T2, p53FL/FL, LSL-NrasG12D and ROSA26mTmG (Zhang et al., 2015). Mice were fed standard labora-

tory chow diets ad libitum.

METHOD DETAILS

Data Sources
This study is based on two data sources: low-infusion data were obtained from infused fastingmice in previouswork (Hui et al., 2017),

while the high-infusion data were acquired based on following protocols.

Reagents
Unless otherwise specified, all reagents were purchased from Sigma-Aldrich. Jugular vein catheters, vascular access buttons, and

infusion equipment were purchased from Instech Laboratories. Stable isotope glucose were purchased from Cambridge Isotope

Laboratories.

In Vivo 13C Glucose Infusions
To perform in vivo nutrient infusions, chronic indwelling catheters were placed into the right jugular veins of mice and animals

were allowed to recover for 3-4 days prior to infusions. Mice were fasted for 6 h and infused with [U-13C]glucose for 3 h at a rate

of 20 mg/kg/min (150 mL/h). Blood was collected via the tail vein at 3 h and serum was collected by centrifuging blood at 3000 g

for 15 min at 4�C. At the end of infusions, tissues were snap frozen in liquid nitrogen and stored at �80�C for further analyses.

Insulin Measurement
The concentration of insulin in plasma is measured by Ultra Sensitive Mouse Insulin ELISA Kit from Crystal Chem.

Metabolite Extraction from Tissue
Briefly, the tissue sample was first homogenized in liquid nitrogen and then 5 to 10mgwasweighed in a newEppendorf tube. Ice cold

extraction solvent (250 ml) was added to tissue sample, and a pellet mixer was used to further break down the tissue chunk and form

an even suspension, followed by addition of 250mL to rinse the pellet mixer. After incubation on ice for an additional 10min, the tissue

extract was centrifuged at a speed of 20 000 g at 4�C for 10 min. 5 mL of the supernatant was saved in �80�C freezer until ready for

further derivatization, and the rest of the supernatant was transferred to a new Eppendorf tube and dried in a speed vacuum concen-

trator. The dry pellets were reconstituted into 30 mL (per 3 mg tissue) sample solvent (water:methanol:acetonitrile, 2:1:1, v/v) and

3 mL was injected to LC-HRMS.

HPLC Method
Ultimate 3000 UHPLC (Dionex) was used for metabolite separation and detection. For polar metabolite analysis, a hydrophilic inter-

action chromatography method (HILIC) with an Xbridge amide column (100 3 2.1 mm i.d., 3.5 mm; Waters) was used for compound

separation at room temperature. The mobile phase and gradient information were described previously. 2-hydrazinoquinoline deriv-

atives were measured using reversed phase LC method, which employed an Acclaim RSLC 120 C8 reversed phase column (150 3

2.1mm i.d., 2.2mm; Dionex) withmobile phase A: water with 0.5% formic acid, andmobile phase B: acetonitrile. Linear gradient was:

0 min, 2% B; 3 min, 2% B; 8 min, 85% B;9.5 min, 98% B; 10.8 min, 98% B, and 11 min, 2% B. Flow rate: 0.2 mL/min. Column tem-

perature: 25�C.

Mass Spectrometry
The Q Exactive Plusmass spectrometer (HRMS) was equipped with a HESI probe, and the relevant parameters were as listed: heater

temperature, 120�C; sheath gas, 30; auxiliary gas, 10; sweep gas, 3; spray voltage, 3.6 kV for positive mode and 2.5 kV for negative

mode. Capillary temperature was set at 320�C, and S-lens was 55. A full scan range was set at 70 to 900 (m/z) with positive/negative

switching when coupled with the HILIC method, or 170 to 800 (m/z) at positive mode when coupled with reversed phase LCmethod.

The resolution was set at 140 000 (atm/z 200). Themaximum injection time (max IT) was 200ms at resolution of 70 000 and 450ms at
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resolution of 140 000. Automated gain control (AGC) was targeted at 33 106 ions. For targeted MS2 analysis, the isolation width of

the precursor ion was set at 1.0 (m/z), high energy collision dissociation (HCD) was 35%, and max IT is 100 ms. The resolution and

AGC were 35 000 and 200 000, respectively.

Metabolite Peak Extraction and Data Analysis
Raw peak data was processed on Sieve 2.0 software (Thermo Scientific) with peak alignment and detection performed according to

the manufacturer’s protocol. The method ‘‘peak alignment and frame extraction’’ was applied for targeted metabolite analysis. An

input file of theoretical m/z and detected retention time was used for targeted metabolite analysis, and the m/z width was set to 5

ppm. An output file was obtained after data processing that included detected m/z and relative intensity in the different samples.

QUANTIFICATION AND STATISTICAL ANALYSIS

General Analysis Method
Model Design

A principle of model design is parsimony, also referred to as ‘‘Occam’s razor’’ that is to use the simplest model that can appropriately

address the question at hand. Inclusion of parameters and variables should correspond to available data and constraints that param-

eterize the model and allow for the model to address the relevant questions. The primary goal of this study is to quantify the contri-

bution of circulating glucose and lactate to the TCA cycle. Therefore, the model, to reach appropriate conclusions, should balance

the ability to achieve this goal and the complexity that can be precisely evaluated from available data.

To study circulating metabolites, the model contains at least two compartments: plasma and a specific tissue. However, because

circulating glucose and lactate must be balanced, the net flux between plasma and tissue is limited to boundary fluxes of circulating

glucose and lactate, which cannot capture dynamics between circulation and target organs. Therefore, a heterogenous two tissue

system is introduced, and it allows for different patterns in utilization of nutrient source. One common pattern is the Cori cycle, in

which in the fasting state, the sink tissue (muscle) utilizes circulating glucose and excretes lactate, while the source tissue (liver)

convert them back to glucose.

The basic structure using two tissues and plasma is already difficult to model. To prevent overfitting leading to parameter uncer-

tainty, the network in each tissue contains three key nodes: glucose, pyruvate and lactate, and their interconversion fluxes. TCA-

related reactions are described by one unidirectional flux, because introducing more TCA cycle reactions would not address the

question of relative nutrient contributions and lead to overfitting. To intuitively understand whether TCA-related reactions have a sub-

stantial impact on the labeling patterns, theMID of phosphoenolpyruvate (PEP), themetabolite generated from oxaloacetate (OAA) in

the first step of gluconeogenesis, is also measured in liver (source tissue) and skeleton muscle (sink tissue) in the high-infusion rate

data. TheMID for PEP is uncorrelated with that of malate in TCA cycle (Figure S7A), suggesting that the cataplerotic flux from the TCA

cycle intermediates to glucose (which requires PEP as an intermediate) does not have a significant impact on labeling patterns of

metabolites. Similar results are also observed in a previous study from Hui et al. (2017). Although the MID of PEP is not available

in those data, 3-phosphoglycerate (3PG), the metabolite adjacent to PEP in glycolysis/gluconeogenesis (Figure S7B), showed a

similar trend, again indicating that the effect of the labeling pattern from TCA cycle intermediates to glucose is very low. Therefore,

although previous studies show that cataplerotic flux of TCA may be one of major sources of PEP in liver, introducing more TCA re-

actions do change results of the fits from current metabolites, and thus not significantly improve the precision of this model.

However, a more complicated model that includes every reaction carrying the fluxes of the TCA cycle, at least 6 metabolite MIDs

and tens of fluxes should be added, including citrate, a-ketoglutarate (as well as glutamate), succinate, oxaloacetate (as well as

aspartate) in the TCA cycle and PEP in glycolysis. Absolute measurements of fluxes feeding into the TCA cycle from other carbon

sources such as branched chain amino acids and glutamine are also required to fully parameterize the model. The lack of data would

lead to overfitting and parameter uncertainty which limits the conclusions that can be drawn. Under this condition, introducing more

detailed fluxes may not substantially improve fitting precision, but would introduce uncertainties within the current model. Therefore,

after careful consideration of the available data and the primary goal of themodel, the resultingmodel consists of one plasma and two

tissues, which includes glucose, pyruvate, lactate and conversion fluxes between them.

There are some limitations in the current model. For example, in the source tissue, M+3 PEP is higher and M+3 pyruvate is lower

compared with that in sink tissue. considering the similar abundance of M+6 glucose both in source and sink tissue (Figure S4A), this

implies that there might be more high-labeled carbon source that supply of PEP in the source tissue. Limited by available data, the

current model cannot explain the source of those hidden high-labeled carbon sources. Similarly, lower M+3 pyruvate in the source

tissue might be due to some unlabeled sources of pyruvate in source tissue, such as glucogenic amino acids. However, data also

show that the abundance of M+4 inmalate in liver is very low, both in the Hui et al. (2017) data and the high-infusion data. Considering

the high exchange rate between malate and aspartate/oxalacetate, although the cataplerotic flux may be one of the main sources of

PEP, it should not be the main reason for higher M+3 PEP in source tissue, nor the main reason of the difference between experi-

mental and predicted MID in this study.

The structure of thismodel is another point of discussion. For example, in cellular metabolism, the fluxG2 relies on glucose 6-phos-

phatase (G6Pase), but most kinds of sink tissue lack this enzyme. Similarly, the fluxG6 relies on phosphoenolpyruvate carboxykinase

(PEPCK), which is often thought to bemost highly expressed in liver. However, these two fluxes are both preserved in the sink tissue,

since one of the main goal of this model is to introduce exchange fluxes of some metabolites between tissue and circulation.
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Exchange fluxes may significantly affect MID data, which will also influences the results of flux analysis. In tissue level, these ex-

change fluxes are derived as an abstracted model of a series of complicated biochemical reactions, including transport in extracel-

lular fluid, absorption/secretion by tissue cells, and utilization/production by the tissue cells. This complicated process is not directly

equivalent to a cellular biochemical reaction. On the other aspect, for the G2 flux, many sink tissues, such as kidney, heart, lung, head

and leg, has been reported to have release flux or nearly release flux of glucose by direct fluxmeasurement in pigs (Figures 3B and 3C

in Jang et al., 2019). For the G6 flux in sink tissue, from the distribution in the region of feasible solutions, G6 is very small in most

cases (Figure S7I; M1 and M4 in Figures S4B, S5B, S6C, and S6D). However, because of heterogeneity in biological organisms,

in some cases G6 is still very high (M2 andM3 in Figure S4B). These results indicate that the current model may reflect the difference

between cellular level and tissue/organ level metabolism.

Flux Model

In this study, each metabolic reaction network includes many fluxes between different metabolites (chemical reactions) or metabo-

lites traversing through different tissues (diffusions). Flux models include glucose, lactate and pyruvate as metabolites in three com-

partments (plasma, source tissue and sink tissue). Each model contains tens of fluxes, labeled with F (for fluxes in the source tissue),

G (for fluxes in the sink tissue), H (for fluxes in the second sink tissue in models with multiple sink tissues) and J (for fluxes within

plasma). The solution is a vector F = fF1; F2;.;G1;G2;.H1;.; J1;.g containing flux values for all reactions in the metabolic reac-

tion network.

It is required that all fluxes satisfy mass balance constraint, which is:X
cFin;i

Fin;i =
X
cFout;i

Fout;i; (Equation 1)

in which Fin;i and Fout;i represent all input and output fluxes connected to metabolite i respectively (Figure S7C). All fluxes are required

to be within a range ½Fmin;Fmax�.
Flux Constraints

To reduce the degrees of freedom, constraints are introduced: first, the flux that supplements glucose in the source tissue (referred as

F10 in all models) is set as a fixed value Finput. Second, the sumof total input fluxes to plasma glucose, which is glucose turnover flux in

plasma, is set as a fixed value Fcirc;glc. Similarly, the lactate turnover flux in plasma is set as a fixed value Fcirc;lac (Figure S7D). Their

values were chosen from previous research (Hui et al., 2017), and sensitivity with respect to changes in their values was evaluated.

To search the solution space, some fluxes are set to a fixed value during the fitting process. Details are explained in ‘‘Solution

Space Sampling’’ section.

Mass Isotopomer Distribution Calculation

The predictedmass isotopomer distribution (MID) of ametabolite is calculated based onMID of its precursors and corresponding flux

values, which can be expressed as:

~Mi =

P
j

FjMji

P
j

Fj

; (Equation 2)

where ~Mi is predicted MID of metabolite i,Mji is MID of metabolite i produced from a substrate j, and Fj is the flux from j to i.Mji could

be calculated by experimental MID of metabolite j: Mji = fðMjÞ, in which f is the MID conversion function between substrate j and

product i.

For example, glucose and lactate can be converted to pyruvate and mixed together. In the source tissue, F5 and F7 describes the

fluxes that convert glucose and lactate to pyruvate, respectively. Therefore, the predicted MID of pyruvate in the source tissue that

comes from lactate and glucose can be formulated (Figure S7E).

For the MID conversion function f, there are three types of conversions:

(1) Transport of metabolites between plasma and tissue, such as metabolite j being glucose in the plasma and metabolite i being

glucose in the source tissue. This conversion does not change the MID. Therefore, Mji = Mj.

(2) Conversion between lactate and pyruvate, such as metabolite j being lactate in the source tissue and metabolite i being py-

ruvate in the source tissue. Because they have similar structure, conversion between lactate and pyruvate does not change

MID. Therefore, Mji =Mj is also valid in this category.

(3) Conversion between glucose and pyruvate, such as metabolite j being glucose in the source tissue and metabolite i being py-

ruvate in the source tissue. Because they have a different carbon number, this kind of conversion is complicated. Two special

functions are designed to calculate the corresponding MIDs:

a. To calculate the MID of glucose produced by pyruvate through gluconeogenesis, a convolution is used. Suppose that the MID

of pyruvate isMpyr = ½Mpyr;0;Mpyr;1;Mpyr;2;Mpyr;3�, theMID vector of glucose synthetized from pyruvate could be expressed as a

convolution function:
Mglc from pyr = conv2
�
Mpyr

�
= convolution

�
Mpyr ;Mpyr

�
; (Equation 3)
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where the discrete convolution function is defined as:

If two vectors A= ½A0;.;Am�1� and B = ½B0;.;Bn�1�,
C = convolutionðA;BÞ, in which:

Ck =
Xminðk;m�1Þ

i =maxð0;k�nÞ
AiBk�i; k˛f0;1;.;m + n� 1g: (Equation 4)

b. To calculate the MID of pyruvate produced by glucose through glycolysis, an approximation method is used here. Suppose

that the MID of glucose isMglc = ½Mglc;0;Mglc;1;Mglc;2;Mglc;3;Mglc;4;Mglc;5;Mglc;6�, because for glucose, carbon atoms are either

all 13C or all 12C,Mglc;0 andMglc;6 will be dominant in MID vectors. Therefore, the MID of pyruvate from glucose could be ex-

pressed as a split function:
Mpyr = split
�
Mglc

�
=
�
Mglc;0;Mglc;mid;Mglc;midMglc;6

�
; (Equation 5)

in which Mglc;mid =
1�Mglc;0�Mglc;6

2 .

TheMID of unlabeled glucose is set toMglc;natural, which is a binomial distribution based on the natural abundance of 13C in glucose,

that is:

Mglc;natural;i =

�
6
i

�
Ri

13Cð1� R13CÞ6�i
; i = 0;1;.; 6; (Equation 6)

in which R13C is natural abundance of 13C. TheMID of infused labeled glucose (substrate of Jin flux in somemodels) is set toMglc;label,

in which all carbon atoms are 13C.

MID Fitting and Flux Solutions

The flux solution to aMID data is obtained byminimizing the difference between predicted and experimental MID data. The difference

between the predicted MID ~Mx and the experimental MID Mx for a metabolite x can be defined by the Kullback–Leibler divergence

DKL (Kullback and Leibler, 1951), which is referred as cost function Lx:

Lx = DKL

�
~MxjjMx

	
=
X
i

�
Mx;i + εlog

�
log

~Mx;i + ε log

Mx;i + ε log

; (Equation 7)

in which Mx;i and ~Mx;i are element i in vector Mx and ~Mx, respectively. εlog is a small number added to maintain numerical stability.

The total cost function of a model is the sum of cost function values for selected metabolites (referred as target metabolites), which

is defined as:

Lmodel =
X
x

Lx: (Equation 8)

Target metabolites in most models consisting of glucose, pyruvate and lactate in source and sink tissues. Some models may

include target metabolites in plasma for better fitting.

Because each ~Mx is a function of the flux vector F, the cost function of the model Lmodel is also a function of F. Therefore, the flux

solution can be written as:

min
F

LmodelðFÞ; s:t: A ,F =b and Fmin%F%Fmax; (Equation 9)

in whichA,F =b represents the flux balance requirement and other constraints. An additional constraint of a flux range F˛ ½Fmin;Fmax�
is also incorporated.

Equation 9 represents an optimization problemwith a nonlinear objective function, linear equality and inequality constraints. There-

fore, it is a constrained nonlinear optimization problem. In this study, we solve this problem by sequential quadratic programming

(SQP) implemented in the SciPy package (Kraft, 1988).

Similar with other iterative optimization algorithms, this algorithm starts with an initial solution and iterates to find the locally optimal

point. The initial solution is generated by a linear programming (LP) problem:

min
F

rT ,F; s:t: A,F =b and Fmin%F%Fmax; (Equation 10)

in which r is a uniformly distributed random vector in range [-0.4, 0.6] with the same size as F. This linear programming problem is

solved by a simplex algorithm implemented in SciPy package (Dantzig, 2016; Winston et al., 2003).

Because SQP can only calculate a local optimum, the LP step is repeated nopt repeat times to generate multiple different initial

values. These initial values are fed into the SQP step to fit the flux vector respectively, and the flux vector with lowest objective value

is then chosen as the final result.
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Random solutions are generated by Linear Programming (Equation 10) as previously described. The objective function value is

computed for each random solution. To evaluate the difference in objective function values between the computed solutions and

the random solutions, a p value is calculated from a nonparametric Wilcoxon rank-sum test implemented in the SciPy package.

Glucose Contribution Calculation

After fitting a set of fluxes from the MID data, we can use the results to calculate the relative contribution of different nutrients to the

TCA cycle. For all models in this study, the contribution from each nutrient in each tissue can be regarded as one non-negative contri-

bution flux, referred as Fglc, Gglc, etc. From those contribution fluxes, the total contribution Rx from one metabolite x is defined as:

Rx =
Fx +Gx +HxP

y

Fy +
P
y

Gy +
P
y

Hy

;Hx may not exist in some models: (Equation 11)

To calculate the non-negative contribution fluxes from raw flux result, we calculate all net fluxes that are connected to TCA cycle.

Suppose those net fluxes are Fnet;x, Fnet;y and Fnet;z, they could be positive or negative. We calculate the contribution fluxes from the

following formulae:

Ftotal;in =
X

cFnet;x>0

Fnet;x (Equation 12)
Ftotal;out = �
X

cFnet;x<0

Fnet;x: (Equation 13)
For each metabolite x : Fx =

8><
>:

�
1� Ftotal;out

Ftotal;in

�
Fnet;x Fnet;x>0

0 Fnet;x<0

: (Equation 14)

For example, suppose in a tissue, glucose, lactate and pyruvate can contribute to the TCA cycle. The raw fluxes are first converted

to net fluxes Fnet;glc, Fnet;lac and Fnet;pyr . Then, the non-negative absolute contribution fluxes Fglc, Flac and Fpyr are calculated based on

Equation 14. Finally, the normalized contribution ratio can be calculated from Equation 11 (Figure S7F).

In the simple situation with only two metabolites (lactate and glucose), Equation 14 simplifies:

If Fnet;glc > 0;Fnet;lac>0 : Fglc =Fnet;glc and Flac =Fnet;lac
If Fnet;glc < 0; Fnet;lac>0 : Fglc = 0 and Flac =Fnet;lac +Fnet;glc
If Fnet;glc > 0; Fnet;lac<0 : Fglc =Fnet;glc +Fnet;lac and Flac = 0: (Equation 15)

Solution Space Sampling

The dimension of the solution space in a model is calculated based on:

ndim = nflux � nbalance � nconstrain � nmid; (Equation 16)

in which nflux is the number of flux variable, nbalance is the number of flux balance equations (number of Equation 1), nconstrain is the

number of flux constraint equations, and nmid is the number of MID equations used to fit the model (number of Equation 7 and

also elements in Equation 8). ndim equals to 2 in basic models (model A and model B) and is larger in the complicated model.

ndim determines the degree of freedom in the solution space. To sample the solution space uniformly, values of some fluxes are

fixed during fitting (or be constant in random unfitted solutions), and the number of fixed fluxes equals to ndim. Those fluxes with fixed

values are called ‘‘free fluxes.’’ Those free fluxes make the dimension of the solution space of the optimization problem the same as

the number of target metabolites, which prevents the problem from being overdetermined or underdetermined. The values of free

fluxes are added to flux constraints equation A,F =b during the optimization process.

Free fluxes are chosen based on model structure. In most models with ndim equal to 2, fluxes F1 and G2 are chosen as free fluxes.

The values of free fluxes are sampled uniformly in their defined ranges. When there are only two free fluxes, the whole solution space

is scanned based on a lattice with nlattice discrete values on each edge (totally n2lattice points) (Figure S7G). As its dimension of free

fluxes increases, computational cost for thorough scanning grows exponentially. Therefore, in some models with higher ndim, we

choose ndiag points with equal intervals on the diagonal of the solution space and shuffle their coordinates to cover the whole space

(Figure S7H).

For each point of free fluxes, the LP problem is solved to obtain the initial solution. If no solution exists under the current free flux

combination, this point will be discarded in the following calculation. After generating an initial solution, for the random unfitted
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solutions, it is directly returned for following analysis. For fitted solutions, the SQP algorithm is executed to obtain the final flux vector

F� that minimizes the objective function (Equation 8) and the corresponding objective value L�. To be regarded as a feasible solution,

F� must satisfy a series of requirements: First, F� should meet minimal requirement for the value of a TCA flux, which means that one

or multiple TCA fluxes must be larger than a threshold FTCA;min. Second, L
� should be small enough, which means the predicted MID

data based on F� is close enough to experimental data. Therefore, we require the objective value L� must be smaller than a threshold

of objective function Lthreshold. Only feasible solutions will be used to calculate the final distribution of glucose contribution. Therefore,

the general procedure of glucose contribution analysis is shown as follows:

1. Choose the free fluxes based on the model.

2. Generate the sample of free fluxes in the solution space.

3. Optimize the objective function and solve for the corresponding flux values based on each free flux sample. Select those so-

lutions with large enough TCA fluxes and small enough objective value.

4. Calculate glucose contribution for all feasible solutions.

5. Plot distribution of glucose contribution.

Parameter Sensitivity

For a parameter sensitivity analysis, experimental MID data or those flux constraints are varied based on a Gaussian distribution to

generate nparam sample different sets. For each perturbed parameter set, a solution space sampling is executed, similar with other

model, to calculate the distribution of glucose contribution. For eachMID data perturbation, each experimental MID vector are multi-

plied with a random vector, which consists of variables with identical independent distributions, to generate raw new vectorM0
x;i;raw,

that is:

M0
x;i;raw = Mx;ið1 + diÞ; in which di is i:i:d and Mx;i is i � th element in Mx: (Equation 17)

di follows the truncated Gaussian distribution Nð0;smidÞ in the range of ½0:1;0:9� and ½ � 0:9; � 0:1�. Then the new rawMID vector is

normalized to generate the final perturbed MID vector M0
x:

M0
x;i =

M0
x;i;rawP

i

M0
x;i;raw

; in which M0
x;i is i � th element in M0

x: (Equation 18)

The MID vector of different metabolites is multiplied by different random vector in one data perturbation. The perturbed data are

used for the following glucose contribution analysis. Perturbation of other constraints is similar with MID data perturbation. In each

perturbation, the target constraint is multiplied by a random variable, that is:

F 0
input = Finputð1 + dÞ (Equation 19)
F 0
circ;glc = Fcirc;glcð1 + dÞ (Equation 20)
F 0
circ;lac = Fcirc;lacð1 + dÞ: (Equation 21)

Similar with the MID data, d follows the truncated Gaussian distribution Nð0;sfluxÞ in the range of dmid or dflux. The perturbed param-

eters are used for the following glucose contribution analysis.

Hypoxia Correction

Tissue extraction introduces issues due to hypoxia. To estimate these effects to the final glucose contribution, a correction to theMID

data is introduced to simulate this process. The hypoxic state includes two major events: glycogen breakdown in source tissue and

elevated lactate generation in sink tissue (Figure S3A). To correct for the effect of hypoxia, the current data is assumed to be

measured under hypoxia, whichmeans the currentMID ofmetabolites is amixture of thatmetabolite in the original tissue and product

of activated reaction under the hypoxia state. Specifically, theMID of glucose in the source tissue ismixture of ð1�amixÞ (80%) original

glucose MID and amix (20%) hydrolyzed glucose from glycogen (unlabeled MID), and the MID of lactate in the sink tissue is mixture of

ð1�amixÞ (80%) original one and amix (20%) reductive product from pyruvate (sameMID as pyruvate in sink tissue) (Figure S3B). From

this assumption we calculate putative original MIDs of these twometabolites. If there is any negative item inMID, assign all of them to

εmid and re-normalized each MID to ensure sum of them equals to 1. Use those processed MID to do the same fitting and calculation

of glucose contribution as Model A.

Ternary Graph Plotting

In those models with three circulating metabolites, glucose, pyruvate and lactate can all contribute to the contribution to the TCA

cycle. Therefore, the ternary graph is plotted to display the distribution of their relative contribution ratio in one figure. The ternary

graphs are plotted using a python package, python-ternary (https://github.com/marcharper/python-ternary).

For each free flux sample, the contribution from glucose Rglc, from pyruvate Rpyr and from lactate Rlac are calculated based on

Equation 14. Each triple set ðRglc;Rlac;RpyrÞ in ternary space T corresponds to the contribution of one sample of a free flux set
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with objective value lower than threshold. To better display the distribution of contribution the set of three fluxes, those points are

binned and used to make the density heatmap. as Figures 5D and 5E. Because of the limitation of ternary plot package, a compli-

cated protocol is designed to reflect the point density (Figure S7I).

First, those sets ðRglc;Rlac;RpyrÞ in ternary space T are transformed to the Cartesian coordinate system ðxR; yRÞ in the spaceR2 by

the following equations:

yR =

ffiffiffi
3

p

2
Rlac

xR =Rglc � yRffiffiffi
3

p :

(Equation 22)

The contribution of triplet set of all solution points are mapped onto the Cartesian system and binned in a two dimensional (2D) grid

with nbin bins on each edge. The output matrixNcontribution is a square matrix with n2bin items. A Gaussian kernel matrixGwith the same

size asNcontribution from a two dimensional Gaussian distribution with the center at origin and covariance matrix as

2
4 s2ternary 0

0 s2ternary

3
5

is constructed. Then, the binned contribution matrixNcontribution and kernel matrixG are convoluted to obtain the final density matrixD

based on a 2D discrete convolution rule:

If A and B are square matrices with m- and n-dimension respectively,

C = conv2dðA;BÞ
in which Cij =
Xn

l = 0

Xn

k = 0

Ai�n
2+ k;j�n

2+ lBkl:ðFill A with 0 if out of scopeÞ (Equation 23)

In the final ternary graph, the triangle is divided into smaller hexagons. For each hexagon, its center coordinates in three-dimen-

sional space ðRglc;Rlac;RpyrÞ are mapped to 2D Cartesian space to get ðxR; yRÞ based on Equation 22. This hexagon is colored based

on the interpolated ðxR; yRÞ onto the density matrix D.

Software Implementation

Scripts in this study are implemented by Python 3.6. Results are running on a desktop PCwith an i7-8700 CPU. To reduce the running

time, some strategies such as parallel based processing are utilized. Each model requires around 10 �50 h of CPU running time.

Common Parameters
Parameter Comment Value

R13C Natural abundance of 13C 0.01109

Mglc;label MID of labeled infusion glucose ½0; 0; 0;0; 0;0; 1�
elog Small number to increase numeric stability

in log function

1e-10

emid Small number to increase numeric stability

in MID normalization

1e-5
Specific Models
Based on general protocols described above, many models are implemented in this study. They are different in data source and me-

tabolites, tissues and parameters included in those models. Relationships between these models are shown in Figure S7J.

Model A: Basic Model for Two Tissues (Figures 1, S1, 2, and S2)

Flux balance equations:

Glucose in source tissue: F1 + F6 + F10 = F2 + F5

Pyruvate in source tissue: F5 + F7 = F6 + F8 + F9

Lactate in source tissue: F3 + F8 = F4 + F7

Glucose in plasma: F2 + G2 = F1 + G1

Lactate in plasma: F4 + G4 = F3 + G3

Glucose in sink tissue: G1 + G6 = G2 + G5

Pyruvate in sink tissue: G7 + G5 = G6 + G8 + G9

Lactate in sink tissue: G3 + G8 = G4 + G7
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Flux constraints:

Supplement glucose flux: F10 = Finput

Glucose turnover flux: F2 + G2 = Fcirc;glc

Lactate turnover flux: F4 + G4 = Fcirc;lac

MID data:

Glucose in source tissue: Mglc;source

Pyruvate in source tissue: Mpyr;source

Lactate in source tissue: Mlac;source

Glucose in plasma: Mglc;plasma

Lactate in plasma: Mlac;plasma

Glucose in sink tissue: Mglc;sink

Pyruvate in sink tissue: Mpyr;sink

Lactate in sink tissue: Mlac;sink

MID predictions:

Glucose in source tissue: ~Mglc;source =
F1,Mglc;plasma +F6,conv2ðMpyr;sourceÞ+F10,Mglc;natural

F1 +F6 +F10

Pyruvate in source tissue: ~Mpyr;source =
F5,splitðMglc;sourceÞ+F7,Mlac;source

F5 +F7

Lactate in source tissue: ~Mlac;source =
F3,Mlac;plasma +F8,Mpyr;source

F3 +F8

Glucose in sink tissue: ~Mglc;sink =
G1,Mglc;plasma +G6,conv2ðMpyr;sinkÞ

G1 +G6

Pyruvate in sink tissue: ~Mpyr;sink =
G5,splitðMglc;sinkÞ+G7,Mlac;sink

G5 +G7

Lactate in sink tissue: ~Mlac;sink =
G3,Mlac;plasma +G8,Mpyr;sink

G3 +G8

Cost function:

Lmodel1 = Lglc;source + Lpyr;source + Llac;source + Lglc;sink + Lpyr;sink + Llac;sink (Equation 24)

Glucose contribution calculation. After fitting a result F = fF1;F2;:::;F9;F10;G1;G2;:::;G8;G9g, glucose contribution Rglc is calculated

based on Equations 11 and 15. We first calculate Fnet;glc, Fnet;lac, Gnet;glc and Gnet;lac:

Fnet;glc = F5 � F6;Fnet;lac =F7 � F8;Gnet;glc =G5 �G6;Gnet;lac =G7 �G8: (Equation 25)

Therefore, Fglc and Flac can be calculated by:

If Fnet:glc > 0 and Fnet;lac>0; Fglc =Fnet;glc; Flac = Fnet;lac
If Fnet;glc > 0 and Fnet;lac<0; Fglc =Fnet;lac +Fnet;glc =F9;Flac = 0
If Fnet;glc < 0 and Fnet;lac>0;Fglc = 0;Flac =Fnet;lac + Fnet;glc =F9: (Equation 26)

Because F9 = Fnet;glc +Fnet;lac and it must be non-negative, it is impossible that Fnet;glc and Fnet;lac are both negative.

The Gglc and Glac in the sink tissue have a similar form by replacing F to G in Equation 26.

Therefore, the glucose contribution of sink tissue and in complete model can be calculated as:

Rglc =
Gglc

Gglc +Glac

(Equation 27)
R0
glc =

Fglc +Gglc

Fglc +Gglc +Flac +Glac

: (Equation 28)

Similarly, the lactate contribution can also be calculated as:

Rlac =
Glac

Gglc +Glac

(Equation 29)
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R0
lac =

Flac +Glac

Fglc +Gglc + Flac +Glac

: (Equation 30)

Free fluxes and sampling. F1 and G2 are chosen as free fluxes. Because of limitation of circulatory flux of glucose, the common

upper bound for them is Fcirc;glc. Each of them is uniformly sampled from ½Fmin;Fcirc;glc� for nlattice different values. Therefore, the total

sample number is n2lattice. For each sampled point, if F9<FTCA;min or G9<FTCA;min after optimization, this sample is filtered.

Data source. The data to fit this model is the low-infusion dataset. The source tissue is liver, while the sink tissue is one from heart,

brain, skeletal muscle, kidney, lung, pancreas, small intestine and spleen, respectively. If not mentioned, MID data from glucose-

infused M1 is used by default. Glucose-infused M5 and M9, and lactate-infused M3, M4, M10 and M11 are also analyzed to prove

the data robustness.

Parameter table.
Category Parameter Comment Value

Model nflux Total flux number 19

nbalance Number of flux balance equations 8

nconstrain Number of flux constraints (not including

free fluxes)

3

nmid Number of MID predictions 6

ndim Number of free fluxes 2

Fmin Minimal flux value 1

Fmax Maximal flux value 500

Finput Value of supplement glucose flux in source

tissue

35

Fcirc;glc Value of glucose turnover flux 150.9

Fcirc;lac Value of lactate turnover flux 374.4

Optimization nopt repeat Repeat number to optimize the cost

function

10

Lthreshold Objective value threshold to accept the

fitting result

0.1

Sample nlattice Sample number for each free flux 1000

FTCA;min Minimal TCA flux value 2
Distribution of local and global glucose contribution. The local contribution ratio Rglc reflects contribution ratios of circulating me-

tabolites in sink tissue, while the global contribution ratio R’glc reflects those from both source and sink tissue. Therefore, it is

reasoned that their distributions are different. Specifically, Rglc tends to approach extreme values, and usually shows a bimodal dis-

tribution. On the contrary, R’glc displays a continuous distribution in most cases. This kind of special distribution can be explained by

model structure:

In the two-tissuemodel, flux balance requirement only allow three patterns for net fluxes (Figure S8A). Among these three patterns,

the pattern with the contribution ratio 0 < Rglc<1 has a smaller solution space than what is observed for the other two patterns. This is

because 0 < Rglc < 1 requires G7 > G8 but G7 - G8 < G9 (Figure S8A). However, the two lactate fluxes G7 and G8 are closed to each

other and bothmuch higher thanG9 inmost results (Figure S1I), and thus any small variation ofG7 andG8 will lead toG7 <G8 (situation

that Rglc = 1) or G7 - G8 > G9 (situation that Rglc=0). In addition, compared with concentrated solutions Rglc = 0 or 1, solutions with

0 < Rglc < 1 are evenly distributed between the range 0 to 1. Therefore, in violin plots, Rglc of most feasible solutions have bimodal

distributions with Rglc = 0 or 1.

Considering that we only have a constraint on input flux (equal to the sumof TCA fluxes F9 andG9) and commonmaximal value of all

fluxes, the relative amounts of G7, G8 and G9 are inherently determined by MID data. Therefore, the bimodal distribution of Rglc is

consistent with our data.

The distribution that in most cases Rglc concentrates on 1 shows net fluxes follow the pattern of Cori cycle, in which in sink tissue

glucose is transformed to lactate and in source tissue lactate is transformed to pyruvate or glucose (Figure S8A). Therefore, these

results are consistent with the conclusion that circulating glucose is the major contribution to TCA cycle in sink tissue. Situations

are also similar for other complicated models.

For the global contribution R’glc, it is an average glucose contribution ratio of source and sink tissue. It should be noticed that in

three patterns allowed in this model, the glucose contribution ratio is usually complementary in sink and source tissue; that is, when
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glucose contributes to TCA cycle and is transformed to lactate in sink tissue, lactate will usually contribute to TCA cycle and/or be

transformed back to glucose in source tissue, and vice versa (Figure S8A). Consequently, the average contribution ratioR’glcwill tend

to be intermediate in most cases.

Although with a continuous distribution, the global contribution R’glc might not be a perfect measurement for the contribution ratio

from circulating metabolites in some special cases. Considering the following situation in Figure S8B: the local contribution ratio

Rglc = 1 in sink tissue. According to the definition of R’glc (Figure S2A), Fglc = 0, Flac = F9, Gglc = G9, Glac = 0. Therefore, if F9 > G9,

which means TCA flux in source tissue is higher than that in sink tissue, although TCA flux in sink tissue completely derives from

glucose, the global contribution ratio R’glc is still lower than 0.5. However, in this case the major circulating metabolite contributing

to TCA cycle should be considered as glucose, and lactate should be considered as the product of sink tissue.

In our opinion, Rglc and R’glc could both be referred as ‘‘glucose contribution ratio,’’ and that their value is larger or smaller than 0.5

in each feasible solution could both be an indicator whether major contribution to TCA fluxes is glucose or lactate in this case. Their

different distributions merely reflects their different properties in large-scale sampling groups. Therefore, we use results from the cal-

culations of both Rglc and R’glc together to solidify our conclusion.

Parameter sensitivity for model A (Figure 3). MID data and three parameters are perturbed individually and used for analysis based

on model A. All model constructions and unperturbed parameters are also same as model A. Only the resolution to sample the so-

lution space is reduced to increase efficiency.

Data source. Similar with model A, this part uses the low-infusion dataset. In all perturbations, the source tissue is liver and the sink

tissue is heart. Only the MID data from M1 is used.

Parameter table. (Underlined items indicate differences from those in model A)
Category Parameter Comment Value

Model nflux Total flux number 19

nbalance Number of flux balance equations 8

nconstrain Number of flux constraints (not including

free fluxes)

3

nmid Number of MID predictions 6

ndim Number of free fluxes 2

Fmin Minimal flux value 1

Fmax Maximal flux value 1000

Finput Initial value of supplement glucose flux in

source tissue

100

Fcirc;glc Initial value of glucose turnover flux 150.9

Fcirc;lac Initial value of lactate turnover flux 374.4

Optimization nopt repeat Repeat number to optimize the cost

function

10

Lthreshold Objective value threshold to accept the

fitting result

0.2

Sample nlattice Sample number for each free flux 100

FTCA;min Minimal TCA flux value 2

Parameter sensitivity smid Variance of perturbation random variable

for MID data

0.5

sflux Variance of perturbation random variable

for constant fluxes

0.2

dmid Variance range of MID data ±0.1, 0.9

dflux Variance range of constant fluxes ±0.05, 0.6

nparam sample Number of different perturbations

generated for sensitivity analysis

100
Hypoxia correction for model A (Figure S3). MID data are corrected and used for analysis based on model A. All model construc-

tions and unperturbed parameters are also same as model A.

Data source. Similar withmodel A, this part uses the low-infusion dataset. The source tissue is liver and the sink tissue is heart. Only

the MID data from M1 is used.
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Parameter table. (Underlined items indicate differences from those in model A)
Category Parameter Comment Value

Model nflux Total flux number 19

nbalance Number of flux balance equations 8

nconstrain Number of flux constraints (not including

free fluxes)

3

nmid Number of MID predictions 6

ndim Number of free fluxes 2

Fmin Minimal flux value 1

Fmax Maximal flux value 500

Finput Value of supplement glucose flux in source

tissue

35

Fcirc;glc Value of glucose turnover flux 150.9

Fcirc;lac Value of lactate turnover flux 374.4

Optimization nopt repeat Repeat number to optimize the cost

function

10

Lthreshold Objective value threshold to accept the

fitting result

0.1

Sample nlattice Sample number for each free flux 1000

FTCA;min Minimal TCA flux value 2

Hypoxia correction amix Assumed mixture ratio for hypoxia

correction

20%
Model B: Model for High-Infusion Data (Figures 4 and S4)

(Underlined items indicate differences from those in model A)

Flux balance equations:

Glucose in source tissue: F1 + F6 + F10 = F2 + F5

Pyruvate in source tissue: F5 + F7 = F6 + F8 + F9

Lactate in source tissue: F3 + F8 = F4 + F7

Glucose in plasma: F2 + G2 + Jin = F1 + G1

Lactate in plasma: F4 + G4 = F3 + G3

Glucose in sink tissue: G1 + G6 = G2 + G5

Pyruvate in sink tissue: G7 + G5 = G6 + G8 + G9

Lactate in sink tissue: G3 + G8 = G4 + G7

Flux constraints. This model removes the glucose turnover flux constraint. Alternatively, it adds glucose in plasma to target

metabolites.

Supplement glucose flux: F10 = Finput

Infusion glucose flux: Jin = Finfusion

Lactate turnover flux: F4 + G4 = Fcirc;lac

MID data:

Glucose in source tissue: Mglc;source

Pyruvate in source tissue: Mpyr;source

Lactate in source tissue: Mlac;source

Glucose in plasma: Mglc;plasma

Lactate in plasma: Mlac;plasma

Glucose in sink tissue: Mglc;sink

Pyruvate in sink tissue: Mpyr;sink

Lactate in sink tissue: Mlac;sink
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MID predictions:

Glucose in source tissue: ~Mglc;source =
F1,Mglc;plasma +F6,conv2ðMpyr;sourceÞ+F10,Mglc;natural

F1 +F6 +F10

Pyruvate in source tissue: ~Mpyr;source =
F5,splitðMglc;sourceÞ+F7,Mlac;source

F5 +F7

Lactate in source tissue: ~Mlac;source =
F3,Mlac;plasma +F8,Mpyr;source

F3 +F8

Glucose in plasma: ~Mglc;plasma =
F2,Mglc;source +G2,Mglc;sink + Jin,Mglc;label

F2 +G2 + Jin

Glucose in sink tissue: ~Mglc;sink =
G1,Mglc;plasma +G6,conv2ðMpyr;sinkÞ

G1 +G6

Pyruvate in sink tissue: ~Mpyr;sink =
G5,splitðMglc;sinkÞ+G7,Mlac;sink

G5 +G7

Lactate in sink tissue: ~Mlac;sink =
G3,Mlac;plasma +G8,Mpyr;sink

G3 +G8

Cost function:

Lmodel1 = Lglc;source + Lpyr;source + Llac;source + Lglc;plasma + Lglc;sink + Lpyr;sink + Llac;sink : (Equation 31)

Glucose contribution calculation. Glucose contribution calculation in this model is same as model A. The raw flux result F =

fF1; F2; :::; F9;F10;G1;G2; :::;G8;G9g is processed by Equations 25 and 26 to calculate glucose and lactate contribution fluxes.

Finally, Equations 27 and 29 are utilized to calculate the relative glucose and lactate contribution Rglc and Rlac, while Equations 28

and 30 are for R0
glc and R0

lac.

Free fluxes and sampling. ndim in this model is still 2. Free fluxes are also F1 andG2. This model removes constraint on the glucose

turnover flux, and thus the free fluxes have a wider range. Each flux is uniformly sampled from ½Fmin;Fmax free� for nlattice different

values. Therefore, the total sample size is still n2lattice. For each sampled point, if F9<FTCA;min orG9<FTCA;min after optimization, this sam-

ple is filtered out.

Data source. The data to fit this model is the high-infusion dataset. The source tissue is liver, while the sink tissue is skeletal muscle.

The MID data from mouse M1, M2, M3 and M4 are used.

Parameter table. Because of the higher infusion flux, the glucose turnover flux in plasmawill increase, and thus lactate turnover flux

Fcirc;lac should also increase. Furthermore, the higher labeling ratio decreases fitting accuracy (Figure S4). Therefore, the threshold of

objective function was also increased.
Category Parameter Comment Value

Model nflux Total flux number 20

nbalance Number of flux balance equations 8

nconstrain Number of flux constraints (not including

free fluxes)

3

nmid Number of MID predictions 7

ndim Number of free fluxes 2

Fmin Minimal flux value 1

Fmax Maximal flux value 1000

Finput Value of supplement glucose flux in source

tissue

80

Finfusion Value of glucose infusion flux 111.1

Fcirc;lac Value of lactate turnover flux 400

Optimization nopt repeat Repeat number to optimize the cost

function

10

Lthreshold Objective value threshold to accept the

fitting result

0.25

Sample nlattice Sample number for each free flux 1500

Fmax free Maximal flux value of two free fluxes 300

FTCA;min Minimal TCA flux value 2
Model C: Model for Three Tissues (Figures 5 and S5)

(Underlined items indicate differences from those in model A)

Flux balance equations:

Glucose in source tissue: F1 + F6 + F10 = F2 + F5

Pyruvate in source tissue: F5 + F7 = F6 + F8 + F9
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Lactate in source tissue: F3 + F8 = F4 + F7

Glucose in sink tissue 1: G1 + G6 = G2 + G5

Pyruvate in sink tissue 1: G7 + G5 = G6 + G8 + G9

Lactate in sink tissue 1: G3 + G8 = G4 + G7

Glucose in sink tissue 2: H1 + H6 = H2 + H5

Pyruvate in sink tissue 2: H7 + H5 = H6 + H8 + H9

Lactate in sink tissue 2: H3 + H8 = H4 + H7

Glucose in plasma: F2 + G2 + H2 = F1 + G1 + H1

Lactate in plasma: F4 + G4 + H4 = F3 + G3 + H3

Flux constraints:

Supplement glucose flux: F10 = Finput

Glucose turnover flux: F2 + G2 + H2 = Fcirc;glc

Lactate turnover flux: F4 + G4 + H4 = Fcirc;lac

MID data:

Glucose in source tissue: Mglc;source

Pyruvate in source tissue: Mpyr;source

Lactate in source tissue: Mlac;source

Glucose in sink tissue 1: Mglc;sink1

Pyruvate in sink tissue 1: Mpyr;sink1

Lactate in sink tissue 1: Mlac;sink1

Glucose in sink tissue 2: Mglc;sink2

Pyruvate in sink tissue 2: Mpyr;sink2

Lactate in sink tissue 2: Mlac;sink2

Glucose in plasma: Mglc;plasma

Lactate in plasma: Mlac;plasma

MID predictions:

Glucose in source tissue: ~Mglc;source =
F1,Mglc;plasma +F6,conv2ðMpyr;sourceÞ+F10,Mglc;natural

F1 +F6 +F10

Pyruvate in source tissue: ~Mpyr;source =
F5,splitðMglc;sourceÞ+F7,Mlac;source

F5 +F7

Lactate in source tissue: ~Mlac;source =
F3,Mlac;plasma +F8,Mpyr;source

F3 +F8

Glucose in sink tissue 1: ~Mglc;sink1 =
G1,Mglc;plasma +G6,conv2ðMpyr;sink1Þ

G1 +G6

Pyruvate in sink tissue 1: ~Mpyr;sink1 =
G5,splitðMglc;sink1Þ+G7,Mlac;sink1

G5 +G7

Lactate in sink tissue 1: ~Mlac;sink1 =
G3,Mlac;plasma +G8,Mpyr;sink1

G3 +G8

Glucose in sink tissue 2: ~Mglc;sink2 =
H1,Mglc;plasma +H6,conv2ðMpyr;sink2Þ

H1 +H6

Pyruvate in sink tissue 2: ~Mpyr;sink2 =
H5,splitðMglc;sink2Þ+H7,Mlac;sink2

H5 +H7

Lactate in sink tissue 2: ~Mlac;sink2 =
H3,Mlac;plasma +H8,Mpyr;sink2

H3 +H8

Cost function:

Lmodel1 = Lglc;source + Lpyr;source + Llac;source + Lglc;sink1 + Lpyr;sink1

+ Llac;sink1 + Lglc;sink2 + Lpyr;sink2 + Llac;sink2: (Equation 32)

Glucose contribution calculation. Slightly different from that inmodel A, after fitting a result F = fF1;F2;:::;F9;F10;G1;G2;:::;G8;G9;H1;

H2; :::;H8;H9g, Fnet;glc, Fnet;lac, Gnet;glc, Gnet;lac, Hnet;glc and Hnet;lac can be calculated from raw flux values:

Fnet;glc =F5 � F6;Fnet;lac = F7 � F8

Gnet;glc =G5 �G6;Gnet;lac =G7 �G8

Hnet;glc =H5 � H6;Hnet;lac =H7 � H8:
(Equation 33)

Therefore, Fglc, Flac, Gglc, Glac, Hglc and Hlac in different tissue can be calculated based on Equation 26. Then, the glucose contri-

bution in sink tissue Rglc and in complete model R0
glc can be calculated as:

Rglc =
Gglc +Hglc

Gglc +Hglc +Glac +Hlac

(Equation 34)
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R0
glc =

Fglc +Gglc +Hglc

Fglc +Gglc +Hglc +Flac +Glac +Hlac

: (Equation 35)

Similarly, the lactate contribution Rlac and R0
lac can also be calculated as:

Rlac =
Glac +Hlac

Gglc +Hglc +Glac +Hlac

(Equation 36)
R0
lac =

Flac +Glac +Hlac

Fglc +Gglc +Hglc +Flac +Glac +Hlac

: (Equation 37)

Free fluxes and sampling. ndim in this model is 5. Therefore, F1, G2, H1, F3 and G4 are chosen as free fluxes. These fluxes are con-

strained by circulatory fluxes of glucose and lactate (see glucose turnover flux and lactate turnover flux in ‘‘Flux Constraints’’ section).

Therefore, their maximal value is bounded by Fcirc;glc or Fcirc;lac. Specifically, dynamic ranges of F1, G2 and H1 are ½Fmin;Fcirc;glc�, and
those of F3 andG4 are ½Fmin;Fcirc;lac�. Those dynamic ranges constitute a 5-dimension solution space S. To uniformly sample inS, we

pick ndiag points from its diagonal and shuffle the five coordinates of those points. Those ndiagsample points are used for following

analysis. For each sampled point, if G9<FTCA;min and H9<FTCA;min after optimization, this sample is filtered.

Data source. The data to fit this model is the low-infusion dataset. The source tissue is liver, the sink tissue 1 and sink tissue 2 are

combinations from heart, brain and skeletal muscle. MID data from mouse M1 is used.

Parameter table. Because the cost function includes more MID data during the optimization process, the threshold of objective

function also increases. The sample number ndiag is set to be close to the previous total sample number n2lattice.
Category Parameter Comment Value

Model nflux Total flux number 28

nbalance Number of flux balance equations 11

nconstrain Number of flux constraints (not including

free fluxes)

3

nmid Number of MID predictions 9

ndim Number of free fluxes 5

Fmin Minimal flux value 1

Fmax Maximal flux value 700

Finput Value of supplement glucose flux in source

tissue

40

Fcirc;glc Value of glucose turnover flux 150.9

Fcirc;lac Value of lactate turnover flux 374.4

Optimization nopt repeat Repeat number to optimize the cost

function

10

Lthreshold Objective value threshold to accept the

fitting result

0.15

Sample ndiag Total sample number in solution space 3 3 106

FTCA;min Minimal TCA flux value 2
Model D: Model for Three Circulating Metabolites for Low-Infusion Data (Figures 6B, 6D, S6A, S6C, S6E, S6G, and S6I)

(Underlined items indicate differences from those in model A)

Flux balance equations:

Glucose in source tissue: F1 + F6 + F12 = F2 + F5

Pyruvate in source tissue: F5 + F7 + F9 = F6 + F8 + F10 + F11

Lactate in source tissue: F3 + F8 = F4 + F7

Glucose in plasma: F2 + G2 = F1 + G1 + J1
Lactate in plasma: F4 + G4 + J2 = F3 + G3 + J3
Pyruvate in plasma: F10 + G10 + J1 + J3 = F3 + G3 + J2
Glucose in sink tissue: G1 + G6 = G2 + G5
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Pyruvate in sink tissue: G5 + G7 + G9 = G6 + G8 + G10 + G11

Lactate in sink tissue: G3 + G8 = G4 + G7

Flux constraints:

Supplement glucose flux: F10 = Finput

Glucose turnover flux: F2 + G2 = Fcirc;glc

Lactate turnover flux: F4 + G4 = Fcirc;lac

Pyruvate turnover flux: F9 + G9 = Fcirc;pyr

MID data:

Glucose in source tissue: Mglc;source

Pyruvate in source tissue: Mpyr;source

Lactate in source tissue: Mlac;source

Glucose in plasma: Mglc;plasma

Lactate in plasma: Mlac;plasma

Pyruvate in plasma: Mpyr;plasma

Glucose in sink tissue: Mglc;sink

Pyruvate in sink tissue: Mpyr;sink

Lactate in sink tissue: Mlac;sink

MID predictions:

Glucose in source tissue: ~Mglc;source =
F1,Mglc;plasma +F6,conv2ðMpyr;sourceÞ+F12,Mglc;natural

F1 +F6 +F12

Pyruvate in source tissue: ~Mpyr;source =
F5,splitðMglc;sourceÞ+F7,Mlac;source +F9,Mpyr;plasma

F5 +F7 +F9

Lactate in source tissue: ~Mlac;source =
F3,Mlac;plasma +F8,Mpyr;source

F3 +F8

Glucose in sink tissue: ~Mglc;sink =
G1,Mglc;plasma +G6,conv2ðMpyr;sinkÞ

G1 +G6

Pyruvate in sink tissue: ~Mpyr;sink =
G5,splitðMglc;sinkÞ+G7,Mlac;sink +G9,Mpyr;plasma

G5 +G7 +G9

Lactate in sink tissue: ~Mlac;sink =
G3,Mlac;plasma +G8,Mpyr;sink

G3 +G8

Lactate in plasma: ~Mlac;plasma =
G4,Mlac;sink +F4,Mlac;source + J2,Mpyr;plasma

G4 +F4 + J2

Pyruvate in plasma: ~Mpyr;plasma =
G10,Mpyr;sink +F10,Mpyr;source + J1,splitðMglc;plasmaÞ+ J3,Mlac;plasma

G10 +F10 + J1 + J3

Cost function:

Lmodel1 = Lglc;source + Lpyr;source + Llac;source + Lglc;sink + Lpyr;sink

+ Llac;sink + Llac;plasma + Lpyr;plasma: (Equation 38)

Glucose contribution calculation. Because there are three nutrients that contribute to the TCA cycle, after fitting a result F =

fF1;F2; :::;F9;F10;G1;G2; :::;G8;G9;J1;J2;J3g, the glucose, lactate and pyruvate contribution ratio, Rglc, Rlac and Rpyr respectively,

are calculated based on Equation 11.

First, the net fluxes connected to the TCA cycle can be calculated:

Fnet;glc =F5 � F6; Fnet;lac =F7 � F8;Fnet;pyr =F9 � F10

Gnet;glc =G5 �G6;Gnet;lac =G7 �G8;Gnet;pyr =G9 �G10:
(Equation 39)

The total in and out fluxes for the TCA cycle in the source tissue (Ftotal;in and Ftotal;out) and in the sink tissue (Gtotal;in andGtotal;out) can

be calculated based on Equations 12 and 13 and those net fluxes in Equation 39. Contribution fluxes of glucose Fglc, lactate Flac and

pyruvate Fpyr in the source tissue can be calculated from Equation 14 and net fluxes in Equation 39. Similarly,Gglc,Glac andGpyr in the

sink tissue can also be calculated. Therefore, the contribution ratio from three metabolites can be calculated as:

Rglc =
Gglc

Gglc +Glac +Gpyr

(Equation 40)
R0
glc =

Fglc +Gglc

Fglc +Gglc +Flac +Glac +Fpyr +Gpyr

(Equation 41)
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Rlac =
Glac

Gglc +Glac +Gpyr

(Equation 42)
R0
lac =

Flac +Glac

Fglc +Gglc + Flac +Glac +Fpyr +Gpyr

(Equation 43)
Rpyr =
Gpyr

Gglc +Glac +Gpyr

(Equation 44)
R0
pyr =

Fpyr +Gpyr

Fglc +Gglc +Flac +Glac +Fpyr +Gpyr

: (Equation 45)

Free fluxes and sampling. ndim in this model is 5. Therefore, F1, G2, F9,G10 and F3 are chosen as free fluxes. These fluxes are con-

strained by circulatory fluxes of glucose, lactate and pyruvate (see glucose turnover flux, lactate turnover flux and pyruvate turnover

flux in ‘‘Flux Constraints’’ section). Therefore, their upper bounds are set by Fcirc;glc, Fcirc;lac or Fcirc;pyr . Specifically, the dynamic ranges

of F1 andG2 are ½Fmin;Fcirc;glc�, those of F9 andG10 are ½Fmin;Fcirc;pyr �, and that of F3 is ½Fmin;Fcirc;lac�. Those dynamic ranges constitute a

5-dimensional solution space S. Similar with what was computed in model C, we pick ndiag points uniformly from the diagonal of S

and shuffle the five coordinates of those points. Those ndiagsampled points are generated. For each sampled point, if F11< FTCA;min or

G11<FTCA;min after optimization, this sample is filtered.

Data source. The data to fit this model is the low-infusion dataset. Similar with model A, the source tissue is liver and the sink tissue

is heart. The MID data from mouse M1 are used.

Parameter table. Because thismodel includesmore circulatingmetabolites, the value of input glucose flux is set slightly higher than

that in model A. Similar with model C, the threshold of the objective function also increases, and the sample number ndiag is set to the

same value. Parameters for the ternary graph are set to provide high resolution.
Category Parameter Comment Value

Model nflux Total flux number 26

nbalance Number of flux balance equation 9

nconstrain Number of flux constraints (not including

free fluxes)

4

nmid Number of MID predictions 8

ndim Number of free fluxes 5

Fmin Minimal flux value 1

Fmax Maximal flux value 800

Finput Value of supplement glucose flux in source

tissue

60

Fcirc;glc Value of glucose turnover flux 150.9

Fcirc;lac Value of lactate turnover flux 374.4

Fcirc;pyr Value of pyruvate turnover flux 57.3

Optimization nopt repeat Repeat number to optimize the cost

function

10

Lthreshold Objective value threshold to accept the

fitting result

0.15

Sample ndiag Total sample number in solution space 1 3 106

FTCA;min Minimal TCA flux value 2

Ternary graph sternary Variance of Gaussian kernel in

ternary graph

0.15

nbin Resolution of ternary graph 256
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Model E: Model for Three Circulating Metabolites for High-Infusion Data (Figures 6E, S6B, S6D, S6F, and S6J)

(Underlined items indicate differences from those in model A)

The only difference between this model and model D is the infusion flux.

Flux balance equations:

Glucose in source tissue: F1 + F6 + F12 = F2 + F5

Pyruvate in source tissue: F5 + F7 + F9 = F6 + F8 + F10 + F11

Lactate in source tissue: F3 + F8 = F4 + F7

Glucose in plasma: F2 + G2 + Jin = F1 + G1 + J1
Lactate in plasma: F4 + G4 + J2 = F3 + G3 + J3
Pyruvate in plasma: F10 + G10 + J1 + J3 = F3 + G3 + J2
Glucose in sink tissue: G1 + G6 = G2 + G5

Pyruvate in sink tissue: G5 + G7 + G9 = G6 + G8 + G10 + G11

Lactate in sink tissue: G3 + G8 = G4 + G7

Flux constraints:

Supplement glucose flux: F10 = Finput

Infusion glucose flux: Jin = Finfusion

Lactate turnover flux: F4 + G4 = Fcirc;lac

Pyruvate turnover flux: F9 + G9 = Fcirc;pyr

MID data:

Glucose in source tissue: Mglc;source

Pyruvate in source tissue: Mpyr;source

Lactate in source tissue: Mlac;source

Glucose in plasma: Mglc;plasma

Lactate in plasma: Mlac;plasma

Pyruvate in plasma: Mpyr;plasma

Glucose in sink tissue: Mglc;sink

Pyruvate in sink tissue: Mpyr;sink

Lactate in sink tissue: Mlac;sink

MID predictions:

Glucose in source tissue: ~Mglc;source =
F1,Mglc;plasma +F6,conv2ðMpyr;sourceÞ+F12,Mglc;natural

F1 +F6 +F12

Pyruvate in source tissue: ~Mpyr;source =
F5,splitðMglc;sourceÞ+F7,Mlac;source +F9,Mpyr;plasma

F5 +F7 +F9

Lactate in source tissue: ~Mlac;source =
F3,Mlac;plasma +F8,Mpyr;source

F3 +F8

Glucose in sink tissue: ~Mglc;sink =
G1,Mglc;plasma +G6,conv2ðMpyr;sinkÞ

G1 +G6

Pyruvate in sink tissue: ~Mpyr;sink =
G5,splitðMglc;sinkÞ+G7,Mlac;sink +G9,Mpyr;plasma

G5 +G7 +G9

Lactate in sink tissue: ~Mlac;sink =
G3,Mlac;plasma +G8,Mpyr;sink

G3 +G8

Glucose in plasma: ~Mglc;plasma =
F2,Mglc;source +G2,Mglc;sink + Jin,Mglc;label

F2 +G2 + Jin

Lactate in plasma: ~Mlac;plasma =
G4,Mlac;sink +F4,Mlac;source + J2,Mpyr;plasma

G4 +F4 + J2

Pyruvate in plasma: ~Mpyr;plasma =
G10,Mpyr;sink +F10,Mpyr;source + J1,splitðMglc;plasmaÞ+ J3,Mlac;plasma

G10 +F10 + J1 + J3

Cost function:

Lmodel1 = Lglc;source + Lpyr;source + Llac;source + Lglc;sink + Lpyr;sink

+ Llac;sink + Lglc;plasma + Llac;plasma + Lpyr;plasma: (Equation 46)

Glucose contribution calculation. The glucose contribution calculation in this model is same as in model D. After fitting a flux vector

F = fF1;F2; :::;F9;F10;G1;G2; :::;G8;G9;J1;J2;J3g, the contribution to the TCA cycle from glucose Rglc, from lactate Rlac and from py-

ruvate Rpyr in sink tissue can be calculated by Equations 40, 42, and 44, respectively. Similarly, those contribution in complete model

R0
glc, R

0
lac and R0

pyr can also be calculated by Equations 41, 43, and 45.

Free fluxes and sampling. It is the same as inmodel D. F1,G2, F9,G10 and F3 are chosen as free fluxes. Dynamic ranges of F1 andG2

are ½Fmin; Fcirc;glc�, those of F9 and G10 are ½Fmin; Fcirc;pyr �, and that of F3 is ½Fmin; Fcirc;lac�. ndiag points are picked uniformly from its
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diagonal and the five coordinates of those points are then randomly shuffled. Those ndiagsample points are generated. For each

sampled point, if F11<FTCA;min or G11<FTCA;min after optimization, this sample is filtered.

Data source. The data to fit thismodel is the high-infusion dataset. Similar as inmodel C, the source tissue is liver and the sink tissue

is skeletal muscle. MID data from mouse M1 are used.

Parameter table. Most parameters are samewithmodel D. Circulatory fluxes of lactate Fcirc;lac and pyruvate Fcirc;pyr are increased to

adapt to the higher glucose infusion flux. Similar with model C, the higher labeling ratio decreases the fitting accuracy, hence

requiring a higher tolerance threshold of objective function.
Category Parameter Comment Value

Model nflux Total flux number 26

nbalance Number of flux balance equations 9

nconstrain Number of flux constraints (not including

free fluxes)

4

nmid Number of MID predictions 8

ndim Number of free fluxes 5

Fmin Minimal flux value 1

Fmax Maximal flux value 1000

Finput Value of supplement glucose flux in source

tissue

150

Finfusion Value of glucose infusion flux 111.1

Fcirc;lac Value of lactate turnover flux 400

Fcirc;pyr Value of pyruvate turnover flux 70

Optimization nopt repeat Repeat number to optimize the cost

function

10

Lthreshold Objective value threshold to accept the

fitting result

0.4

Sample ndiag Total sample number in solution space 3 3 106

FTCA;min Minimal TCA flux value 2

Ternary graph sternary Variance of Gaussian kernel in

ternary graph

0.15

nbin Resolution of ternary graph 256
Physiological Feasibility of Solutions
Physiological feasibility is a key feature for biomedical models. In the results shown in main figures, solutions that have low TCA flux

are considered as infeasible in physiological conditions, and therefore filtered out. Here we provide an example of a solution without

this filter for comparison. For simplicity, solutions with filter (in main figures) are referred as filtered results, while the results without

filter (in this section) are referred as unfiltered results.

Solving process is identical with that in main text. If not specified, all other parameters are same.

Model A: Basic Model for Two Tissues
Category Parameter Comment Value

Model Fmax Maximal flux value 1000

Finput Value of supplement glucose flux in source

tissue

100
In this model, the fitting process is identical to filtered results of Model A. Compared with filtered results in the main text, fitting

precision has not been changed: MID prediction and distribution of objective function without filter are almost same as results

with filter (Figures S9A–S9H and S9J–S9P, compared with Figure S1). Distributions of most fluxes are also similar, but F9 and G9,

which are two TCA fluxes to source and sink tissue respectively, are significantly different: Before filtering, boxplot shows quantiles

of F9 and G9 are closed to extreme value (Figure S9I). This kind of distribution means one of TCA fluxes is optimized to near zero in
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many results, which should not occur in physiological condition. After filtering, F9 and G9 are more concentrated on half of Finput, and

two TCA fluxes are well balanced, which should be more physiologically feasible (Figure S1I).

The definition of glucose contribution in the complete model Rglc’ is also the same (Figures S2A and S2B). Distribution of Rglc’ in

unfiltered results is generally similar with that in filtered ones, but the distribution is more concentrated (Figures S9R–S9X, compared

with Figures S2B–S2I. Notice that the arrangement of sink tissue andmice is different in two results). This may due to high enrichment

of extreme value of TCA fluxes F9 and G9.

Parameter sensitivity for model A.
Category Parameter Comment Value

Model Fmax Maximal flux value 1000

Finput Value of supplement glucose flux in source

tissue

100

Parameter sensitivity dflux Variance range of constant fluxes ±0.1, 0.9

sflux Variance of perturbation random variable

for constant fluxes

0.5
Glucose contribution for lactate circulatory flux in this calculation ismore robust than that inmain figures (Figures S9Y and 3C). First

reason is this calculation count for robustness of glucose contribution in complete model (Rglc’), while that in the main figure is

glucose contribution in sink tissue (Rglc). Rglc may be more sensitive to perturbation on lactate circulatory flux. Another reason is

current calculation has not been filtered, and TCA fluxes F9 and G9 concentrate on extreme value, which causes the relatively

concentrated distribution of glucose contribution. This pattern may be more resistant to perturbation on parameters.

Model B: Model for High-Infusion Data
Category Parameter Comment Value

Model Fmax Maximal flux value 2000

Finput Value of supplement glucose flux in source

tissue

100
Similarly, the fitting process except filtering is identical to filtered results of Model B. Compared with filtered results in themain text,

fitting precision has not been changed: MID prediction and distribution of objective function in unfiltered results are almost same as

filtered results (Figures S10A, S10C, 4D, and S4A). The distribution of fluxes for feasible solutions has significant changes: because

the Fmax is higher in this calculation, G7 and G8 are significantly larger than other fluxes, which is less feasible in physiological con-

dition (Figure S10B, compared with Figure S4B). Furthermore, similar with Model A, F9 andG9 tend to be optimized to extreme value,

such as those inM1,M2 andM4 (Figure S10B). After filtering, as expected, F9 andG9 concentrate on intermediate value (Figure S4B).

The definition of glucose contribution in the complete model Rglc’ is also same (Figure S4C). Distribution of Rglc’ in unfiltered re-

sults is slightly different from filtered ones (Figure S10D, compared with Figure S4D).

Model C: Model for Three Tissues
Category Parameter Comment Value

Model Fmax Maximal flux value 1000

Finput Value of supplement glucose flux in source

tissue

100
Similarly, the fitting process except filtering is identical to filtered results of Model C. MID prediction and distribution of objective

function in unfiltered results are almost same as filtered results (Figures S11A, S11C, S5A, and S5C). The distribution of fluxes in

feasible solutions has a significant change: because the Fmax is higher in this calculation, H7 and H8 are slightly larger than other

fluxes (Figure S11B, compared with Figure S5B). In this model, the filter just requires G9 and H9 not to be too small at the same

time. Therefore, in unfiltered results, F9 and G9 tend to be optimized to extreme value (Figure S11B), while in filtered ones F9 tends

to concentrate to a small value, and G9 tends to concentrate to a large value (Figure S5B).
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The definition of glucose contribution in the complete modelR’glc is also same (Figure S5D). Distribution ofR’glc in unfiltered results

is similar but also slightly different from filtered ones (Figure S11D, compared with Figure S5E).

Model D: Model for Three Circulating Metabolites for Low-Infusion Data
Category Parameter Comment Value

Model Fmax Maximal flux value 1000

Finput Value of supplement glucose flux in source

tissue

200
Model E: Model for Three Circulating Metabolites for High-Infusion Data
Category Parameter Comment Value

Model Fmax Maximal flux value 2000

Finput Value of supplement glucose flux in source

tissue

150
The fitting process in this two calculations except filtering are identical to filtered results of Model D and E. MID prediction and dis-

tribution of objective function in unfiltered results are almost same as filtered results (Figures S12A, S12B, S12E, S12F, S6A, S6B,

S6E, and S6F). Due to higher value of Fmax, range of all fluxes are larger in this calculation than that in main figures, especially for

G7 and G8 in Model E (Figure S12D, compared with Figure S6D). Filtering also dramatically change distributions of TCA fluxes

F11 and G11 in two models: in unfiltered results, F11 concentrates on maximum value while G11 concentrates on minimum value

in Model D (Figure S12C), and in Model E their quantiles are also closed to extreme value (Figure S12D). However, in filtered results

F11 and G11 concentrate on intermediate values in both Model D and Model E (Figures S6C and S6D).

The definition of contribution from different metabolites in the complete model R’glc, R’lac and R’pyr are also same (Figure S6H).

Compared with filtered results, unfiltered results shows almost zero R’pyr and lower R’lac, as well as relatively higher R’glc (Figures

S12G and S12H, compared with Figures S6I and S6J). This may be due to much higher median value of F4 and F10 in this unfiltered

results compared to filtered results (Figures S12C and S6C). Considering that the function of source tissue (liver) is converting lactate

and other carbon source to glucose to supply other organs, lower outflux of lactate (F4) and pyruvate (F10) in source tissue in filtered

results are more physiologically feasible.

ADDITIONAL RESOURCES

GitHub website: https://github.com/LocasaleLab/Lactate_MFA
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