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ABSTRACT: Drug-induced liver injury (DILI) has been the
single most frequent cause of safety-related drug marketing
withdrawals for the past SO years. Recently, deep learning
(DL) has been successfully applied in many fields due to its
exceptional and automatic learning ability. In this study, DILI
prediction models were developed using DL architectures, and
the best model trained on 475 drugs predicted an external
validation set of 198 drugs with an accuracy of 86.9%,
sensitivity of 82.5%, specificity of 92.9%, and area under the
curve of 0.95S, which is better than the performance of
previously described DILI prediction models. Furthermore,
with deep analysis, we also identified important molecular
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features that are related to DILI. Such DL models could improve the prediction of DILI risk in humans. The DL DILI prediction
models are freely available at http://www.repharma.cn/DILIserver/DILI home.php.

B INTRODUCTION

More than 700 drugs have been found to be associated with
liver injury."” Drug-induced liver injury (DILI) has been the
single most frequent cause of safety-related drug marketing
withdrawals for the past SO years (e.g, iproniazid, etc.)
continuing to the present (e.g, ticrynafen, benoxaprofen,
bromfenac, troglitazone, nefazodone).’ Drugs that cause severe
DILI in humans typically do not show clear hepatotoxicity in
animals, do not show dose-related toxicity, and cause low rates
of severe injury (1 in 5000 to 10 000 or less)." The mechanisms
underlying DILI are complicated and diverse and are far from
being elucidated, making toxicological studies of DILI difficult.

Recently, in silico DILI prediction models based on the
molecular structures of drug compounds have become a more
convenient and practical approach to predicting DILL* A DILI
prediction model described by Cruz-Monteagudo et al,, which
involved radially distributed molecular descriptors and linear
discriminant analysis for classification. It was trained on a 74-
drug data set and achieved 82% prediction accuracy for an
external test data set of 13 drugs.” A later model designed by
Rodgers et al. used a K-nearest neighbor method and mixed
molecular descriptors. It showed 74% sensitivity and 90%
specificity for 37 drugs. Although these two models seemed to
perform well, their predictive abilities for large external data sets
were never validated. Ekins et al. developed a Bayesian model
with extended connectivity fingerprints and other interpretable
descriptors based on 295 compounds. It had a 60% predictive
accuracy on a test set of 237 compounds.” More recently, a
model using mixed machine learning algorithms and PaDEL
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molecular descriptors developed by Liew et al, trained on a
large data set of 1087 compounds, showed 63% predictive
accuracy on an external test set of 120 compounds.® Chen et al.
developed a model that used a Decision Forest algorithm” and
Mold2 chemical descriptors'® and that was trained on a reliable
public data set from the U.S. Food and Drug Administration
(FDA). When tested on three external data sets, its accuracies
were between 62 and 69%.* In 2015, Muller at al. used a
combination of theoretically calculated parameters and
measured in vitro biological data for DILI predictions. Their
best model achieved a training balanced accuracy of 88%,
correctly identifying 9 out of 10 compounds of the external test
set, but with a significantly decreased accuracy of predictions
using solely theoretical molecular descriptors.'’ In this way,
there remains considerable room for improvement in DILI
prediction.

Deep learning (DL) techniques, which were developed based
on deep artificial neural networks, have improved the state of
the art in the fields of computer vision,'””'” speech
recognition,"*™** and natural language processing.”*~*’ These
major breakthroughs made by DL push machine learning closer
to one of its original goals, artificial intelligence.”” A key
advantage of deep learning is that features can be learned
automatically using a general-purpose procedure. This
procedure is usually implemented by a multilayer stack of
simple neural networks with nonlinear input—output mappings,
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Table 1. Summary of Data Sets Used in This Study”

data sets
Training NCTR training data set
Combined training data set
Liew training data set
NCTR validation data set
Greene data set

Xu data set

External validation

Combined validation data set

Liew validation data set

DILI labels

DILI-positive DILI-negative total number
81 109 190
236 239 475
648 417 1065
95 90 185
209 111 320
128 108 236
114 84 198
70 49 119

“Note: Some of the data sets used in this study differed slightly from the original data sets due to data check.

involving deep neural networks (DNNs),"?*%**3! " convolu-

tional neural networks (CNNs),"**™*° recurrent or recursive
neural networks (RNNs),*® and other deep networks with
more than one hidden layer and more neurons in each layer. It
has been confirmed that deep-learning architectures have the
power to handle big data with little manual intervention.””*®
These practical and useful techniques also have been applied to
chemoinformatics and bioinformatics®~* for dealing with
different tasks, such as aqueous solubility prediction,
quantitative structure—activity relationship analysis,”® and
predictin§ the sequence specificities of DNA/RNA binding
proteins. ?

Motivated by its great success in these fields mentioned
above, we expect that DL is also practical and effective for DILI
prediction. To predict molecular progerties like DILI, if
autoencoder-based’’ and convolutional®” architectures can be
adopted, the coding of given molecules can be represented by
vectors of fixed length, referring to molecular fingerprints>” and
descriptors.” Although potentially useful for chemoinfor-
matics,>* these approaches still rely heavily on good encoding
function,™ which is a translation from structural information to
vectors. Recently, Lusci et al. developed the novel undirected
graph recursive neural networks (UGRNN) method used for
molecular structure encoding and used this encoding approach
to effectively predict the water solubility of compounds based
on DL architectures.”* One advantage of this UGRNN is that it
relies only minimally on the identification of suitable molecular
descriptors because suitable representations are learned
automatically from the data.* In the present study, this
UGRNN molecular encoding architectures combined with a
line bisection method’® were used to construct new DILI
prediction models. These models (called DL DILI models)
were trained and tested on large data sets and showed high
performance, indicating their power and potential in terms of
predicting DILI in the field of chemoinformatics.

B MATERIALS AND METHODS

Data Sets. Four publicly available data sets composed of
annotated DILI-positive or DILI-negative properties of drugs or
compounds were used in this work. The first three data sets
were pharmaceutical compound data sets previously used by
Chen et al:* (1) a data set from the U.S. FDA’s National
Center for Toxicological Research (called the NCTR data
set);””7 (2) a data set from Greene et al.”® (called the Greene
data set), which was used as a validation data set; and (3) and a
data set from Xu et al.”” (called the Xu data set), which was also
used as a validation data set. For these three data sets, drugs
with a high risk of DILI were labeled “DILI-positive,” drugs
with no risk of DILI were labeled “DILI-negative,” and drugs
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with a low risk of DILI were not included due to their
uncertainty. Though similar DILI labeling criteria were
adopted, there were still inconsistencies in annotations between
the three data sets (e.g, 17 inconsistent annotations between
the NCTR and Greene data sets).” The fourth data set was a
large data set from Liew et al.® (called the Liew data set), which
included pharmaceutical and nonpharmaceutical compounds.
For the Liew data set, a different labeling method was used:
compounds with the potential to cause any adverse liver effects
were labeled “DILI-positive,” and compounds not associated
with any adverse liver effects were labeled “DILI-negative.” In
this way, the Liew data set was very different from the first three
data sets. A combined data set (called the combined data set)
was also constructed. It was a combination (with duplication
and annotation consistency check) of the NCTR, Greene, and
Xu data sets. A summary of the five data sets is shown in Table
1. Details of data processing of the data sets are provided in the
Supporting Information.

Molecular Encoding and DL Architecture. UGRNN
architecture, which was described in detail by Lusci et al,** was
used in our models for molecular structural encoding. Typically,
chemical structures of single molecules are represented by small
undirected graphs® (UGs), in which heavy atoms are
represented as nodes and bonds between atoms are represented
as edges. Briefly, UGRNN encodes molecular structures from
UGs into directed acyclic graphs (DAGs) for use in recursive
neural networks® (RNN). In UGRNN architecture, to
transform a UG into a DAG, each node is traversed sequentially
and regarded as a root. Then, all edges are oriented toward the
root with the shortest possible path. The architecture of the
UGRNN approach is composed of two layers: an encoding
layer and an output layer. A brief schematic diagram of
UGRNN encoding of glycine is shown in Figure 1. In this
example, each atom of glycine is encoded as a vector with
information on atom types and bond types (e.g., atom types are
encoded as C = (1,0,0), N = (0,1,0), and O = (0,0,1); bond
types are similarly encoded).** The vector transfers its own and
upper layer information to the next layer until the root layer (or
root node) is reached. A schematic diagram of the DL
architecture used in current study is shown in Figure S1. The
final output node P in Figure S1 represents a binary annotation
of DILL

DL Architecture Settings and Models. To optimize the
DL architecture settings, three parameters were set as variables
and one parameter as a constant: the number of hidden layer
cells in the UGRNN encoding layer (EH), which ranged from 3
to 12; the number of output layer cells in the UGRNN
encoding layer (EO), which ranged from 3 to 12; the number
of hidden layer cells in the output layer (OH), which ranged
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Figure 1. A brief schematic diagram of UGRNN encoding of glycine.
First, the chemical structure of glycine is converted into a primary
canonical SMILES structure. Second, each of the atoms in the SMILES
structure is sequentially defined as a root node. Third, information for
all other atoms is transferred along the shortest possible paths.

SMILES: NCC(=0)O

from 3 to 9; and the number of output layer cells in the output
layer (OO), which was equal to 1. As a result, a total of 700 (10
X 10 X 7 X 1) DL architectures were obtained. We used a fast
pretraining strategy with only 100 iterations of training to assess
the 700 DL architectures. To evaluate the pretraining DL
models, the scoring function S was defined as

S = —min(Vgpgp) — min(Vy,g) + max(g)

(1)

Here, S is the evaluation score of a DL model and Vyysp, Vasgp
and Vi are the vectors of root-mean-square error (RMSE),
average absolute error (AAE), and the Pearson correlation
coefficient (R), respectively.

After architecture setting optimization, the 10 DL
architectures with the highest scores and top potencies were
selected for 5000 iterations of deep training. The best deeply
trained models were selected as the final DL DILI models. In
the process of deep training, a scoring function F was defined as

A = —RMSE — AAE + R ()

10

F= Y A,/10

i=1

)

Here, A is the evaluation score of each iteration of training and
F, used to evaluate the corresponding architecture, is the mean
value of the top 10 values of A.

A 10-fold cross validation was used in all training processes.
We constructed three final DL DILI prediction models based
on three different training data sets, as shown by the flowchart
in Figure 2. The three models were the DL model trained on
the NCTR data set (DL-NCTR), the DL model trained on the
combined data set (DL-Combined), and the DL model trained
on the Liew data set (DL-Liew). All final constructed models
were further evaluated using external validation tests.

DILI-Related Molecular Feature Motifs. One deficiency
of DL models is that they are black-box models without
apparent physical meaning. To further understand which
molecular features are the most responsible for DILI risk,
1444 PaDEL molecular descriptors62 were used to describe the
molecules in the NCTR data set from Chen et al.*®* Assuming
normal distribution of the two-class samples, a two-sample T-
test was used to identify the descriptors that significantly
differed between DILI-positive and -negative drugs. Next, a
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Figure 2. Flowchart for constructing DL DILI models. NCTR, NCTR
data set; Greene, Greene data set; Xu, Xu data set; Combined,
combined data set; Liew, Liew data set.
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method of principal component analysis (PCA) was used to
determine whether the samples could be distinguished. If the
samples were well distinguished by certain combinations of
descriptors, the important descriptors were excavated with an
analysis of clustering and coeflicient weights.

B RESULTS AND DISCUSSION

Construction of DL Models. Pretraining performance of
the 700 models is shown in Figure S2, and details of the top 10
DL architectures are listed in Table 2. The number of cells in
each NN layer was a key factor influencing the models. The
best 10 preselected architecture settings were then used to
deeply train the models with 5000 iterations. The best-scoring
model architectures were selected with best F values, as marked
in bold in Table 2.

Because the outputs of the DL DILI prediction models are
real numbers between 0 and 1, we employed cutoff values in
the final models to distinguish DILI-positive and DILI-negative
drugs. Cutoft values were calculated using the Daim tool in the
R package® to estimate misclassification rate, sensitivity, and
area under the curve (AUC) based on cross validation. The
best cutoff values for the DL-NCTR, DL-Liew, and DL-
Combined models were 0.4014, 0.6190, and 0.4811,
respectively.

DL-NCTR DILI Model. The training and external validation
results of the DL-NCTR model are shown in Table 3, in which
the performance of recently described models is also shown for
comparison. The training accuracy (ACC), sensitivity (SEN),
and specificity (SPE) of the DL-NCTR model were 80.5%,
70.3%, and 88.2%, respectively. These results were much better
than the original results reported by Chen et al. (ACC 69.7%,
SEN 57.8%, and SPE 77.9%)" with nearly the same training set.
The prediction results of the DL-NCTR model on the three
external validation data sets were an ACC of 70.3%, SEN of
80.0%, and SPE of 60.0% for the NCTR validation data set; an
ACC of 64.7%, SEN of 75.1%, and SPE of 46.0% for the
Greene validation data set; and an ACC of 61.9%, SEN of
61.7%, and SPE of 62.1% for the Xu validation data set. The
difference between training and prediction results suggested
there might be overfitting in the training process due to the
small data size. The AUC of the DL-NCTR model for the
NCTR validation data set was 0.720. Although the prediction
ACC and SEN of the current model on the NCTR validation
data set was slightly better than that of Chen et al.’s model, the
prediction performance on the Greene and Xu data sets was
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Table 2. Details of the Top 10 DL Architecture

DL architectures

ID 1 2 3 4 S 6 7 8 9 10
options DL-NCTR model
EH 11 12 12 7 9 11 12 4 9 7
EO 11 10 10 9 7 6 10 12 11 10
OH 3 6 7 4 3 4 3 8 4 4
(e]) 1 1 1 1 1 1 1 1 1 1
options DL-Liew model
EH 4 8 9 11 10 11 9 12 7 10
EO 12 9 12 6 11 11 7 4 10 4
OH 4 4 8 9 9 7 9 9 8 8
(e]) 1 1 1 1 1 1 1 1 1 1
options DL-Combined model
EH 9 10 9 9 10 7 10 6 12 4
EO S 3 4 S 3 11 6 3 3 S
OH 3 8 S 4 4 9 7 8 S 8
00 1 1 1 1 1 1 1 1 1 1
Table 3. Performance of the DL-NCTR Model
internal cross-validation external validation
NCTR originalb NCTR NCTR originalb NCTR originalb Greene originalb Xu
index training model test model Greene test model Xu test model
ACC (%) 80.5 69.7 70.3 68.9 64.7 61.6 61.9 63.1
SEN (%) 70.3 57.8 80.0 663 75.1 584 61.7 60.6
SPE (%) 88.2 779 60.0 71.6 46.0 67.5 62.1 66.1
number of drugs 190 197 185 190 320 328 236 241
(p/n= (p/n = (p/n = (p/n = (p/n= (p/n= (p/n = (p/n =
81/109) 81/116) 95/90) 95/95) 209/111) 214/114) 128/108) 132/109)

“ACC [(TP + TN)/(TP + TN + FP + FN)], SEN [TP/(TP + FN)], SPE [TN/(TN + FP)]. Here, TP = true positive; TN = true negative; FP =
false positive; FN = false negative. “Note: The results of three original models are provided to compare with that of the DL-NCTR model. Internal
and external validation results of the DL-NCTR model are marked in bold. p/n: positive/negative.

only comparable to that of the original models. One possible
reason for this discrepancy may be that some drug DILI
annotations were inconsistent between the NCTR, Greene, and
Xu data sets,” which might be a serious problem for DILI
prediction. Predicting external data sets with DILI annotations
that are consistent with those in the training data set could
solve this problem.

Thus, we further developed the DL-Liew model and DL-
Combined model, which were constructed from large data sets
that may better reveal the learning advantages of DL.
Nonetheless, from the view of the performance of the DL-
NCTR model, the DL method showed a powerful learning
ability relevant to DILI prediction.

DL-Liew DILI Model. The Liew data set is a large training
data set of 1065 pharmaceutical and nonpharmaceutical
compounds. The training and external validation results of
the DL-Liew model are shown in Table 4, in which the
performance of the original Liew model is also shown as a
comparison. The training results of the DL-Liew model were an
ACC of 70.1%, SEN of 70.0%, SPE of 70.0%, Matthew’s
correlation coefficient (MCC) of 0.394, and geometric mean
(GMEAN) of 70.0%, which were better than results produced
using Liew et al.’s model (ACC 63.8%, SEN 64.1%, SPE 63.3%,
MCC 0269, and GMEAN 63.7%).® The prediction perform-
ance of the DL-Liew model on the Liew validation set was an
ACC of 74.8%, SEN of 81.4%, SPE of 65.3%, MCC of 0.474,
and GMEAN of 72.9%, which was again better than the original
results reported by Liew et al. (ACC of 62.2%, SEN of 62.4%,
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Table 4. Performance of the DL-Liew Model

index internal 10-fold cross validation external validation
ACC (%) 70.1(63.8) 74.8 (62.2)
SEN (%) 70.0 (64.1) 81.4(62.4)
SPE (%) 70.0 (63.3) 65.3(61.8)
Mcc? 0394 (0.269) 0474 (0.240)
GMEAN (%)° 70.0 (63.7) 72.9 (61.8)

“The items in parentheses are the results of Liew et al’s original
model. ®MCC:®® ((TP x TN — EN x FP)/(((TP + FN) x (TP +
FP) x (TN + EN) X (TN + FP))"2)). “GMEAN: (SEN x SPE)"2

SPE of 61.8%, MCC of 0.240, and GMEAN of 61.8%).° The
AUC of the DL-Liew model was 0.776 (Figure 3), which was
better than that of the Liew et al. model (AUC of 0.668).°
Therefore, when using the basically same data sets for training
and prediction, the performance of the DL-Liew model was
confirmed to be more powerful for DILI prediction than that of
the model constructed by Liew et al.®

DL-Combined DILI Model. The combined data set was
constructed for two reasons: (1) The three data sets (NCTR,
Greene, and Xu data sets) were all drug data sets and therefore
could be combined, and (2) it was inferred that a large training
data set would be beneficial to determining the advantages of
deep learning. To reconcile the differences in drug DILI
annotations between data sets, we followed the FDA-approved
drug annotations®” as much as possible. Thirteen drugs that
showed different results in the NCTR and Greene data sets
were reannotated. Fourteen other drugs that had different
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Figure 3. External prediction ROC curves for the DL-Combined and
DL-Liew models.

results in the NCTR and Xu validation data sets were also
reannotated. The other drugs were annotated using their
original labeling. The training and external prediction results of
the combined data set are shown in Table 5. The training ACC,

Table S. Performance of the DL-Combined Model

external validation

internal 10-fold cross combined validation set

index validation (198)
ACC (%) 88.4 86.9
SEN (%) 89.9 82.5
SPE (%) 87.0 92.9
MCC 0.771 0.746
GMEAN (%) 883 87.5

SEN, SPE, MCC, and GMEAN were 88.4%, 89.9%, 87.0%,
0.771, and 88.3%, respectively, showing that the model was
quite well trained. The external predictions of ACC, SEN, SPE,
MCC, and GMEAN were 86.9%, 82.5%, 92.9%, 0.746, and
87.5%, respectively. The AUC of the DL-Combined model was
0.955, as shown in Figure 3. These results demonstrated a state-
of-the-art improvement of DILI computational prediction
models by the DL methods.

Influence of the Size of the Training Data set. To
access the influence of the training data set size on model
performance, we built DL models with different percentages
(40%, 60%, 80%, and 100%) of the size of the combined
training set by random data selection. Random selection was
performed three times for each data set size to avoid selection
bias. Training and external validation results are shown in Table
S1. The standard deviations of the training represents the
standard deviations from the 10-fold cross-validation processes.
During 10-fold cross-validation, one tenth of the training data
was reserved for prediction, and if the training set is small (for
example, 40% of the Combined training set had 190
compounds, and then only 19 compounds were used for
validation), the standard deviations tends to be large. It is also
possible that the DL method has not still learned enough
information to predict robustly when data size is small. We
found that with an increasing size of the combined training set,
the training accuracies are increasing (their corresponding
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standard deviations are decreasing), and the prediction
performance is also increasing. In Figure 4, the ACC values

100 100
A B
95 95
90 90
£ 85 85
3
Q &0 80
75 75
70 70
65

40% 60% 80% 100%
Size of training dataset

40% 60% 80% 100%
Size of training dataset

Figure 4. Training (A) and prediction (B) accuracies of the DL-
Combined models trained on different sizes of training data sets (40%,
60%, 80%, and 100%).

became stable when 60—100% of the data were used, but the
standard deviation values continued to decrease with increasing
data set size. Therefore, the performance of the DL model
became more accurate and robust with larger training data sets.

Influence of Different Splits on Training and
Prediction Data. In order to investigate the stability of our
DL models with different splits for training and prediction sets,
we randomly divided the combined data set into training and
validation sets with the proportion ~475/198 for 60 times. The
computational results with the DL-Combined settings are listed
in Table 6. The average training and prediction results were

Table 6. Performance of Random Splits of Training and
Prediction Data on the Combined Data Set

external validation

internal cross-validation combined validation set

index (60 runs)® (198)
ACC (%) 84.6 + 1.1 843 + 12
SEN (%) 844 + 17 794 + 2.1
SPE (%) 84.8 + L5 909 + 1.7
MCC 0.696 + 0.021 0.695 + 0.023
GMEAN (%) 84.5 + 1.1 850 + 12

“Cross-validated results are averaged values over 60 runs of 10-fold
cross-validations.

slightly worse than the original values, but are still strong
enough. These results provide more reasonable and interpret-
able assessment of our DL DILI models.

Comparison to Normal NN and DNN Models. DILI
prediction models were built using PaDEL®* and Mold2'’
descriptors with normal neural networks (NN) and deep neural
networks (DNN)*® with the combined data set. The details of
the methods of the NN and DNN models are shown in the
Supporting Information. The training and prediction results on
the combined data set for these models are shown in the Table
7 and Figure 5, from which it is clear that models using deep
neural networks perform slightly better than models using
normal shallow neural networks for both training and
prediction and both PaDEL and Mold2 descriptors, but they
perform worse than the DL-Combined model using UGRNN.
In UGRNN architecture, apparent descriptors are not needed,
and the molecular structural information is automatically
encoded by such a deep net. From these results, we can see
that the good performance of our DL models comes from both
the encoding method and the deep neural networks.

DOI: 10.1021/acs.jcim.5b00238
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Table 7. Performance of the Neural Network Model and Deep Neural Network Model

neural network

deep neural network

molecular descriptor index internal 10-fold cross validation
Mold2 descriptor ACC (%) 82.5
SEN (%) 78.4
SPE (%) 86.6
MCC 0.652
GMEAN (%) 824
PaDEL descriptor ACC (%) 81.6
SEN (%) 75.8
SPE (%) 87.5
MCC 0.638
GMEAN (%) 815

external validation internal 10-fold cross validation external validation

82.3 83.2 83.3
71.1 83.1 79.0
97.6 83.3 89.3
0.688 0.663 0.675
83.3 83.2 84.0
79.1 82.3 81.1
72.3 85.2 82.1
88.1 79.4 79.8
0.599 0.647 0.616
79.8 82.2 80.9

True positive rate

DL-Combined, AUC=0.955
DNN-Combined (Mold2), AUC=0.931
NN-Combined (Mold2), AUC=0.916
DNN-Combined (PaDEL), AUC=0.895
NN-Combined (PaDEL), AUC=0.869

0.2

0.2 0.4 0.6

False positive rate

0.8

Figure S. Prediction ROC curves for the DL-Combined, DNN-
Combined, and NN-Combined models with different types of
descriptors.

Further Discussion of the DL DILI Models. We showed
that DL models performed better than previous models in DILI
prediction. This was most obviously the case when a large data
set was used for training. The DL DILI models performed well
in predicting a large external validation set. As shown by the
ROC curves in Figure 3, the AUC values for the corresponding
external data sets were 0.955 for the DL-Combined model and
0.776 for the DL-Liew model, which were relatively high values
for prediction. The DL-Combined and DL-Liew models were
constructed for two reasons. First, there were differences in
annotations between data sets. For the combined data set, the
FDA-approved drug labeling method was used. Only two kinds
of drugs (high DILI risk and no DILI risk) were included, and
no uncertain data were included. For the Liew data set, a
different strategy was used to label drugs with any DILI
potential “DILI-positive,” and drugs not associated with DILI
“DILI-negative.” This difference of labeling strategies resulted
in 115 inconsistent annotations between the two data sets
(Figure S3). Second, there were also differences in compound
categories between data sets. Whereas the combined data set
was a pharmaceutical data set, the Liew data set included
pharmaceutical and nonpharmaceutical compounds.8 As such,
the DL-Combined model is more suitable for drug DILI risk
prediction, and its prediction results were relatively extreme:
DILI risk or no DILI risk. The DL-Liew model, on the other
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hand, is more suitable for compound (i.e., not only drug) DILI
risk prediction, and its positive results are likely to indicate less
DILI risk. Therefore, we established DL-Combined and DL-
Liew models which have different scopes of application.

In the current study, DILI properties were divided into only
two categories: DILI-positive and DILI-ne_gative. However, in
many public and canonical data sets,”>">” multiple levels of
DILI are often used. Multiple-level prediction of DILI might be
more accurate, but the lack of data makes it difficult to develop
such prediction models at the current time. A unified criterion
of drug DILI annotation is urgently needed to help develop
better DL models to improve DILI risk prediction.

Analysis of DILI Feature Motifs. Three hundred and one
descriptors (P value <0.05), including AlogP* ((1 — log P)?),
Mannhold log P, and average molecular weight,”” showed
statistically significant differences after the two-sample t-test.
Therefore, we performed PCA on these descriptors. Combina-
tional distribution projected on the first and second principle
components is displayed in Figure 6. Results showed that DILI-

Second principle component

L] DILI-positive
DILI-negative

First principle component

®  DiLl-positive
DiLI-negative

First principle component

Figure 6. Plot of two top principle components. (A) The two principle
components are based on the total descriptors (not treated with t
test). The ACC based on the dotted line is 74.4%. (B) The two
principle components are based on the selected descriptors (treated
with ¢ test). The ACC is improved to 83.1%.

positive and -negative samples could be distinguished by a
combination of structural features, suggesting the possibility of
predicting DILI simply with the combination of these useful
structural features. Results also showed that fragment complex-
ity (FC; representing the complexity of a system), f(molecular
framework) (FMF; representing promiscuity), and the Zagreb
Index (representing the sum of squares of atom degree over all
heavy atoms),62 which are summarized and shown in Table S2,
were the three most prominent features distinguishing DILI-
positive from DILI-negative compounds. We combined, in

DOI: 10.1021/acs.jcim.5b00238
J. Chem. Inf. Model. 2015, 55, 2085—2093


http://dx.doi.org/10.1021/acs.jcim.5b00238

Journal of Chemical Information and Modeling

pairs, these three features and other confirmed features® (ie.,
log P and daily dose) to analyze the properties of the NCTR
data set. Figure 7 shows the results produced using six different
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Figure 7. Combinations of FMF and daily dose, FC and daily dose,
Zagreb index and daily dose, FMF and log P, FC and FMF, Zagreb
index and FMF for DILI discrimination. The black dotted lines best
distinguish DILI-positive and -negative samples. Details of these six
combinations and their results are shown in Table 8.

feature combinations (log P and daily dose combination, which
was analyzed by Chen et al,** was not analyzed here). Results
showed that the two categories were readily separated by daily
dose, indicating that drug dose actually plays a key role in liver
injury. Although the FC and log P, Zagreb and FC, Zagreb and
log P combinations did not play rather well (Figure S4), the
FMF and log P, FMF and FC, and Zagreb and FMF
combinations identified the positive samples effectively, as
shown in Table 8 and Figure 7. We inferred that these
molecular structural features and their combinations were
prominently associated with DILI and thus could be used for
DILI prediction.

Table 8. Prediction DILI by Simple Pairwise Molecular
Feature Combination

combination of features precision (%)

daily dose/250 + FMF/0.55 > 1 84.9
daily dose/120 + FC/210 > 1 81.7
daily dose/150 + Zagreb/200 > 1 81.7
log P/(—20) + EMF/0.4 > 1 86.8
FC > 220 or FMF > 0.5 84.6
FMF/0.35 + Zagreb/(~295) > 1 92.5

Bl CONCLUSION

In conclusion, using large data sets and the UGRNN molecular
encoding approach with the least information loss, we have
developed DL models for predicting the DILI of drugs and
small compounds. Mainly due to the powerful learning ability
of DL, these models performed better than previous DILI
prediction models. The DL-Combined model trained on 475
drugs predicted an external validation data set of 198 drugs with
an accuracy of 86.9%, sensitivity of 82.5%, specificity of 92.9%,
and AUC of 0.955, which were considerably high. With further
analysis, we also found some important features of molecular
structures that are closely related to DILL. Our DL models are
expected to improve DILI risk prediction in humans and are
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freely available at http://www.repharma.cn/DILIserver/DILI
home.php. The deep learning methods may see widespread use
in chemical and drug informatics studies covering subjects
beyond DILI prediction.
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